Synergistic synchrotron x-ray absorption experiments using imaging magnetic microspectroscopy, x-ray magnetic circular dichroism, and ab initio calculations on FeCr alloys reveal that the Cr content strongly influences the ferromagnetic microstructure and the Fe magnetic moments. The Cr local structure resolved by extended x-ray absorption fine structure (EXAFS) is also found to be affected by the alloy's composition. Both EXAFS and ab initio calculations show a change in the Cr local atomic structure above 10 at.% Cr content from the distance contraction of the first two coordination shells around the Cr absorbing atom. These results indicate the strong dependence of magnetic and structural properties of these alloys on Cr concentration.
Relaxation processes of dislocation systems are studied by two-dimensional dynamical simulations. In order to capture generic features, three physically different scenarios were studied and power-law decays found for various physical quantities. Our main finding is that all these are the consequence of the underlying scaling property of the dislocation velocity distribution. Scaling is found to break down at some cutoff time increasing with system size. The absence of intrinsic relaxation time indicates that criticality is ubiquitous in all states studied. These features are reminiscent of glassy systems and can be attributed to the inherent quenched disorder in the position of the slip planes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.