An interaction between free fatty acids and UCP1 (uncoupling protein-1) leading to de-energization of mitochondria was assumed to be a key event for triggering heat production in brown fat. Recently, Matthias et al., finding indistinguishable de-energization of isolated brown fat mitochondria by fatty acids in UCP1-deficient mice and control mice, challenged this assumption (Matthias, A., Jacobsson, A., Cannon, B., and Nedergaard, J. (1999) J. Biol. Chem. 274, 28150 -28160). Since their results were obtained using UCP1-deficient and control mice on an undefined genetic background, we wanted to determine unambiguously the phenotype of UCP1 deficiency with the targeted Ucp1 allele on congenic C57BL/6J and 129/SvImJ backgrounds. UCP1-deficient congenic mice have a very pronounced cold-sensitive phenotype; however, deficient mice on the F1 hybrid background were resistant to cold. We propose that heterosis provides a mechanism to compensate for UCP1 deficiency. Contrary to the results of Matthias et al., we found a significant loss of fatty acid-induced de-energization, as reflected by membrane potential and oxygen consumption, in brown fat mitochondria from UCP1-deficient mice. Unlike cold sensitivity, fatty acid-induced uncoupling of mitochondria was independent of the genetic background of UCP1-deficient mice. We propose that intracellular free fatty acids directly regulate uncoupling activity of UCP1 in a manner consistent with models described in the literature. Brown adipose tissue (BAT)1 plays an important role in heat production and is considered to contribute to energy balance (5, 6). Stimulation by the sympathetic nervous system causes an up-regulation in the metabolic rate of BAT that is reflected in an increase of heat production (7,8). The ability to generate heat is attributed to the high number of mitochondria containing UCP1 (uncoupling protein-1) (9). This transmembrane protein is thought to be an ion carrier that uncouples respiration from ATP synthesis, allowing mitochondria to produce heat. The importance of UCP1 for thermogenesis was proven by the observation that UCP1-deficient mice are cold-sensitive (10). However, the fact that some UCP1-deficient mice are resistant to cold and that adiposity is not increased led us to postulate that additional thermogenic mechanisms can compensate for UCP1 deficiency. In this respect, UCP1-deficient mice can help not only to understand the mechanisms that control BAT thermogenesis, but can also be used to identify alternative pathways for heat production.Although it is known that the sympathetic nervous system controls heat production of brown adipocytes (11, 12), the intracellular signaling pathway remains unclear. It has been proposed that free fatty acids (FFAs), released by the action of hormone-sensitive lipase, serve both as an energy substrate and as an activator of the proton carrier function of UCP1, thereby triggering heat production. It has also been shown that FFAs can increase respiration of isolated brown adipocytes (13) and that isolated BAT m...
To determine the contribution of muscle lipoprotein lipase (LPL) to lipoprotein metabolism, induced mutant mice were generated that express human LPL exclusively in muscle. By cross-breeding heterozygous LPL knockout mice with transgenic mice expressing human LPL only in muscle, animals were obtained that express human LPL primarily in skeletal muscle on either the null (L0-MCK) or normal (L2-MCK) LPL backgrounds, and these were compared with control littermates (L2). Fed and fasted post-heparin plasma (PHP) LPL activities were increased 1.4-and 2.3-fold, respectively, in L2-MCK mice and were normal in L0-MCK mice compared with controls. The specific enzyme activities of human LPL in mouse plasma was comparable to human LPL in human PHP. Skeletal muscle LPL activity was increased in both L2-MCK and L0-MCK mice in the fed (6.6-fold) and fasted (4.2-fold in L2-MCK; and 3.4-fold in L0-MCK) states. Adipose tissue LPL mRNA and activity were not detectable in L0-MCK mice. Growth and body mass composition were similar among all groups. In the fasted and fed state, L2-MCK mice had 31% and 53% reductions, respectively, in plasma triglycerides (TG), compatible with increased PHP LPL activity. Unexpectedly, both in the fasted and fed state the L0-MCK mice also had reduced TG (22%), despite normal PHP LPL activities. Very low density lipoprotein (VLDL) turnover studies revealed that the decreased TG were due to increased particle fractional catabolic rate in both L2-MCK and L0-MCK mice. Despite reduced TG, both L2-MCK and L0-MCK mice showed reduced high density lipoprotein (HDL) cholesterol levels (16% and 19%, respectively). HDL turnover studies indicated increased HDL cholesteryl ester fractional catabolic rate in the L2-MCK and L0-MCK compared with control mice. In summary, these studies suggest that muscle LPL is particularly potent with regard to VLDL metabolism and is sufficient to compensate for the lack of LPL in other tissues with regard to lipolyzing VLDL particles. With regard to HDL, muscle LPL expression does not result in normal levels due to enhanced breakdown either by mediating accelerated HDL clearance or by failing to establish normal HDL particles that are then cleared more quickly than normal. These studies provide new insights on the tissue-specific effects of LPL on lipoprotein metabolism.
The tissue-specific expression of lipoprotein lipase (LPL) in adipose tissue (AT), skeletal muscle (SM), and cardiac muscle (CM) is rate-limiting for the uptake of triglyceride (TG)-derived free fatty acids and decisive in the regulation of energy balance and lipoprotein metabolism. To investigate the tissue-specific metabolic effects of LPL, three independent transgenic mouse lines were established that expressed a human LPL (hLPL) minigene predominantly in CM. Through cross-breeding with heterozygous LPL knockout mice, animals were generated that produced hLPL mRNA and enzyme activity in CM but lacked the enzyme in SM and AT because of the absence of the endogenous mouse LPL gene (L0-hLPL). LPL activity in CM and postheparin plasma of L0-hLPL mice was reduced by 34% and 60%, respectively, compared with control mice. This reduced LPL expression was sufficient to rescue LPL knockout mice from neonatal death. L0-hLPL animals developed normally with regard to body weight and body-mass composition. Plasma TG levels in L0-hLPL animals were increased up to 10-fold during the suckling period but normalized after weaning and decreased in adult animals. L0-hLPL mice had normal plasma high-density lipoprotein (HDL)-cholesterol levels, indicating that LPL expression in CM alone was sufficient to allow for normal HDL production. The absence of LPL in SM and AT did not cause detectable morphological or histopathological changes in these tissues. However, the lipid composition in AT and SM exhibited a marked decrease in polyunsaturated fatty acids. From this genetic model of LPL deficiency in SM and AT, it can be concluded that CM-specific LPL expression is a major determinant in the regulation of plasma TG and HDL-cholesterol levels.The catabolism of triglycerides (TGs) in postprandial chylomicrons and hepatically synthesized very low density lipoproteins (VLDLs) in extrahepatic tissues is mediated principally by lipoprotein lipase (LPL; see refs. 1 and 2 for review). TG hydrolysis results in the generation of large amounts of free fatty acids (FFA) that are taken up by adipocytes for storage and by muscles for oxidation. Accordingly, the enzyme is vital to energy homeostasis as well as the metabolism of plasma lipoproteins (3). The highest LPL activities are observed in adipose tissue (AT), skeletal muscle (SM), and cardiac muscle (CM), where the enzyme is bound to glucosaminoglycans at the luminal side of the capillary endothelium. This local tethering of the enzyme to the tissues with the highest demand for FFA, together with the large variation in enzyme expression in AT, SM, and CM in response to nutritional and hormonal changes, confers a regulatory function to LPL for the partitioning of FFA among these tissues. This ability of LPL to direct the flux of FFA in the body suggested a ''gate-keeping hypothesis,'' which implicated LPL as the determining factor for the amount of FFA taken up in AT compared with the amount taken up in muscle (4). It follows that balanced regulation of LPL activities in these tissues...
Uncoupling protein-3 (UCP3) is a mitochondrial carrier protein of as yet undefined physiological function. To elucidate characteristics of its function, we studied the effects of fasting on resting metabolic rate, respiratory quotient, muscle Ucp3 expression, and mitochondrial proton leak in wild-type and Ucp3(-/-) mice. Also analyzed were the fatty acid compositions of skeletal muscle mitochondria in fed and fasted Ucp3(-/-) and wild-type mice. In wild-type mice, fasting caused significant increases in Ucp3 (4-fold) and Ucp2 (2-fold) mRNA but did not significantly affect mitochondrial proton leak. State 4 oxygen consumption was not affected by fasting in either of the two groups. However, protonmotive force was consistently higher in mitochondria of Ucp3(-/-) animals (P = 0.03), and fasting further augmented protonmotive force in Ucp3(-/-) mice; there was no effect in wild-type mitochondria. Resting metabolic rates decreased with fasting in both groups. Ucp3(-/-) mice had higher respiratory quotients than wild-type mice in fed resting states, indicating impaired fatty acid oxidation. Altogether, results show that the fasting-induced increases in Ucp2 and Ucp3 do not correlate with increased mitochondrial proton leak but support a role for UCP3 in fatty acid metabolism.
Lipoprotein lipase (LPL) is essential for the hydrolysis and distribution of triglyceride-rich lipoprotein-associated fatty acids among extrahepatic tissues. Additionally, the enzyme facilitates several non-lipolysis associated functions including the cellular uptake of whole lipoprotein particles and lipophilic vitamins. The tissue-speci®c variations of LPL expression have been implicated in the pathogenesis of various lipid disorders, obesity and atherosclerosis. Transgenic technology provided the means to study the physiological response to the overexpression or absence of the enzyme in adipose tissue, muscle and macrophages. The effects of varying LPL expression in adipose tissue and muscle are summarized in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.