For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a pattern‐recognition process of hydrogen‐bonded and geometrical features extracted from x‐ray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogen‐bonding patterns “turn” and “bridge.” Repeating turns are “helices,” repeating bridges are “ladders,” connected ladders are “sheets.” Geometric structure is defined in terms of the concepts torsion and curvature of differential geometry. Local chain “chirality” is the torsional handedness of four consecutive Cα positions and is positive for right‐handed helices and negative for ideal twisted β‐sheets. Curved pieces are defined as “bends.” Solvent “exposure” is given as the number of water molecules in possible contact with a residue. The end result is a compilation of the primary structure, including SS bonds, secondary structure, and solvent exposure of 62 different globular proteins. The presentation is in linear form: strip graphs for an overall view and strip tables for the details of each of 10.925 residues. The dictionary is also available in computer‐readable form for protein structure prediction work.
The usage and control of recent modifications of the program package XDS for the processing of rotation images are described in the context of previous versions. New features include automatic determination of spot size and reflecting range and recognition and assignment of crystal symmetry. Moreover, the limitations of earlier package versions on the number of correction/scaling factors and the representation of pixel contents have been removed. Large program parts have been restructured for parallel processing so that the quality and completeness of collected data can be assessed soon after measurement.
An algorithm has been developed for the automatic interpretation of a given set of observed reciprocal-lattice points. It extracts a reduced cell and assigns indices to each reflection by a graph-theoretical implementation of the local indexing method. All possible symmetries of the observed lattice compatible with the metric of the reduced cell are recognized and reported, together with the unit-cell constants and the linear index transformation relating the conventional to the reduced cell. This algorithm has been incorporated into the program XDS [Kabsch (1988). J. Appl. Cryst. 21, 916-924], which is now able to process single-crystal area-detector data without prior knowledge of the symmetry and the unit-cell constants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.