Mechanochemistry, as a synthesis tool for inorganic materials, became an ever-growing field in material chemistry. The direct energy transfer by collision of the educts with the milling media gives the possibility to design environmentalfriendly reactions. Nevertheless, the underlying process of energy transfer and hence the kinetics of mechanosynthesis remain unclear. Herein, we present in situ synchrotron X-ray diffraction studies coupled with pressure measurements performed during the formation of ZnS and the subsequent phase transition (PT) from the hexagonal to the cubic modification. Milling Zn and S 8 results in the sublimation of S 8 , observed by a sudden pressure increase. Simultaneously, the hexagonal metastable ZnS-modification (wurtzite) forms. Via detection of the pressure maximum, the exact start of the wurtzite formation can be determined. Immediately after the formation of wurtzite, the structural PT to the thermodynamic stable cubic modification sphalerite takes place. This PT can be described by the Prout-Tompkins equation for autocatalytic reactions, similar to thermally induced PT in sulfur vapor at high temperatures (T > 1133 K). The increase in the reactivity of the wurtzite formation is explained by the reaction in sulfur vapor and the induction of defect structures by the collisions with the milling media.
Ultraviolet-assisted low-temperature (550 °C) dry oxidation of Si0.8Ge0.2 strained layers on (100)Si has been studied. The oxidation rate of this material was found to be a factor of 2 greater than that of pure Si oxidation under identical irradiation conditions. Initially, the structure of the oxidized material consists of a SiO2 layer on top of a strained Si1−xGex layer with a Ge concentration significantly higher (x≳0.2) than the initial value. Increasing the oxidation time produces more SiO2 and a Si1−xGex layer further enriched with Ge. However, the oxidation rate is reduced and some of the Ge becomes trapped inside the growing SiO2 layer. For a prolonged irradiation time (≳5 h) SiGe oxidation still continues, unlike the case for pure Si, while the Ge trapped inside the SiO2 forms isolated microcrystalline regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.