A survey was made on the occurrence of soilborne Phytophthora species in 35 oak stands on a range of geologically different sites in Bavaria. The most widespread species were P. quercina, P. cambivora and P. citricola. Seven other Phytophthora species were isolated infrequently. The fine root systems of 106 healthy and 111 declining mature trees of Quercus robur and Q. petraea were intensively investigated. The results indicate that, depending on the site conditions, at least two different complex diseases are referred to under the name`oak decline'. On sites with a mean soil pH (CaCl 2 ) > 3´5 and sandy-loamy to clayey soil texture Phytophthora spp. were commonly isolated from rhizosphere soil, and highly significant correlations existed between crown transparency and various root parameters. Oaks with P. quercina or other Phytophthora spp. in their rhizosphere had markedly higher levels of fine root damage than oaks without Phytophthora spp., and were subject to a relative risk of severe crown symptoms of 2´1 and 2´8, respectively. In contrast, in stands with sandy to sandy-loamy soils and a mean soil pH < 3´9, Phytophthora spp. were not found. In these stands, correlations between crown transparency and various root parameters were either less significant or not significant. It is concluded that Phytophthora species are strongly involved in oak decline on sandy-loamy to clayey sites with a mean soil-pH (CaCl 2 ) > 3´5.
SynopsisGreen plants, within certain limitations, can adapt to a wide variety of unfavourable conditions such as drought, temperature changes, light variations, infectious attacks, air pollution and soil contamination. Depending on the strength of the individual impact(s), fluent or abrupt changes in visible or measurable stress symptoms indicate the deviation from normal metabolic conditions. Most of the visible or measurable symptoms are connected with altered oxygen metabolism principally concerning the transition from mostly heterolytic (two-electron transition) to increased homolytic (one-electron transition) processes. Homolytic reactions within metabolic sequences create, however, free radicals and have to be counteracted by the increase in radical-scavenging processes or compounds, thus warranting reaction sequences under metabolic control. At later states of stress episodes, the above control is gradually lost and more or less chaotic radical processes take over. Finally, cellular decompartmentalisations induce lytic and necrotic processes which are visible as the collapse of darkening cells or tissues. Every episode during this process is governed by a more or less denned balance between pro- and antioxidative capacities, including photosynthetic (strongly under metabolic and oxygen-detoxifying control) and photodynamic (only controlled by scavenger- and/or quencher-availability) reactions. This (theoretical) sequence of events in most cases can only be characterised punctually by strongly defined (analytical) indicator reactions (ESR) and is certainly species- and organ-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.