The alpha-glucosidase inhibitor acarbose, O-[4,6-dideoxy-4[1 s-(1,4,6/5)-4,5,6-trihydroxy-3-hydroxymethyl-2-cyclohexen-1-yl]-amino-alpha-D-glucopyranosyl]-(1-->4)- O-alpha-D-glucopyranosyl-(1-->4)-D-glucopyranose, is produced in large-scale fermentation by the use of strains derived from Actinoplanes sp. SE50. It has been used since 1990 in many countries in the therapy of diabetes type II, in order to enable patients to better control blood sugar contents while living with starch-containing diets. Thus, it is one of the latest successful products of bacterial secondary metabolism to be introduced into the pharmaceutical world market. Cultures of Actinoplanes sp. also produce various other acarbose-like components, of which component C is hard to separate during downstream processing, which is one of the most modern work-up processes developed to date. The physiology, genetics and enzymology of acarbose biosynthesis and metabolism in the producer have been studied to some extent, leading to the proposal of a new pathway and metabolic cycle, the "carbophore". These data could give clues for further biotechnological developments, such as the suppression of side-products, enzymological or biocombinatorial production of new metabolites and the engineering of production rates via genetic regulation in future.
The lincomycin (LM)-production gene cluster of the overproducing strain Streptomyces lincolnensis 78-11 was cloned, analysed by hybridization, as well as by DNA sequencing, and compared with the respective genome segments of other lincomycin producers. The lmb/lmr gene cluster is composed of 27 open reading frames with putative biosynthetic or regulatory functions (lmb genes) and three resistance (lmr) genes, two of which, lmrA and lmrC, flank the cluster. A very similar overall organization of the lmb/lmr cluster seems to be conserved in four other LM producers, although the clusters are embedded in non-homologous genomic surroundings. In the wild-type strain (S. lincolnensis NRRL2936), the lmb/lmr-cluster apparently is present only in single copy. However, in the industrial strain S. lincolnensis 78-11 the non-adjacent gene clusters for the production of LM and melanin (melC) both are duplicated on a large (0.45-0.5 Mb) fragment, accompanied by deletion events. This indicates that enhanced gene dosage is one of the factors for the overproduction of LM and demonstrates that large-scale genome rearrangements can be a result of classical strain improvement by mutagenesis. Only a minority of the putative Lmb proteins belong to known protein families. These include members of the gamma-glutamyl transferases (LmbA), amino acid acylases (LmbC), aromatic amino acid aminotransferases (LmbF), imidazoleglycerolphosphate dehydratases (LmbK), dTDP-glucose synthases (LmbO), dTDP-glucose 4,6-dehydratases (LmbM) and (NDP-) ketohexose (or ketocyclitol) aminotransferases (LmbS). In contrast to earlier proposals on the biosynthetic pathway of the C-8 sugar moiety (methylthiolincosaminide), this branch of the LM pathway actually seems to be based on nucleotide-activated sugars as precursors.
The putative biosynthetic gene cluster for the ␣-glucosidase inhibitor acarbose was identified in the producer Actinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-D-glucose 4,6-dehydratase, acbB. The two flanking genes were acbA (dTDP-D-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C 7 -cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product,
2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cy-
Three streptomycin (SM) production genes from Streptomyces griseus clustered around aphD, the major resistance gene, have been sequenced: strB, coding for an aminocyclitol amidinotransferase, ORF5 (strR), a putative regulatory gene, and ORF1 (strD), possibly coding for a hexose nucleotidylating enzyme. Three promoters and at least five, partially overlapping, transcripts have been identified by S1 mapping and Northern blot experiments. aphD, the resistance gene, is transcribed from two promoters. One of them, located inside the strR gene, seems to be constitutive and the other is switched on later in the growth phase. The late transcripts cover the resistance gene (aphD) and a regulatory gene (strR) which controls the expression of strB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.