Human milk is commonly considered to be unique when compared with the milk of other species with regard to its high content of complex fucosylated and sialylated lactose-derived oligosaccharides. We describe the application of high-pH anion-exchange chromatography with pulsed amperometric detection and TLC to characterize and quantitate neutral and sialylated lactose-derived oligosaccharides in milk from three Asian elephants and human milk. The lactose contents of elephant and human milks were 25–30 g/l and about 66 g/l respectively, whereas total oligosaccharide concentration was about three times higher in elephant milk and comprised up to 40% (10% in human milk) of the carbohydrate content. The ratio neutral: acidic components was different in the milk of the two species; in elephant milk, the N-acetylneuraminic acid-containing oligosaccharides made up almost half of the total amount v. 30% in human milk. Most oligosaccharides in elephant milk were more fucosylated and/or sialylated compared with human milk components. By mild acid hydrolysis, fucose and N-acetylneuraminic acid were cleaved off from complex components, and this resulted in increased amounts of fucose, galactose, N-acetylneuraminic acid, lactose and lacto-N-neo-tetraose. Unique to elephant milk are the high levels of 3′-galactosyllactose (up to 4 g/l) and lacto-N-neo-tetraose which are present in human milk only in trace amounts. Elephant and human milks have high levels and unique patterns of oligosaccharides which may reflect the relative importance of these components in neonatal host defence, in endothelial leucocyte interactions or in brain development.
Transitional forms of the recent classes of vertebrates are only known in paleontology. The well described examples are: Eusthenopteron foordi (Crossopterygii), Ichthyostega and Acanthostega (Labyrinthodontia) between Osteichthyes and Amphibia, Seymouria baylorensis (Amphibiosaria) between Amphibia and Reptilia, Archaeopteryx lithographica (Archaeornithes) between Reptilia and Aves, and the mammal-like reptiles Pelycosauria, Therapsida and Cynodontia between Reptilia and Aves, and the description of their phylogenetical heterochronies in terms of peramorphosis and paedomorphosis shows the progressive role of the motorial, especially the locomotorial organ systems and their functions in comparison with the retarded evolution of the axial system, especially the skull and central nervous system. The evolution of the Hominidae shows the same rule. The evaluation of these transitional forms in their fossil context reveals them as inhabitants of biotopes situated in the border areas of coastal and shore landscapes of marine, brackish or fresh water. These biotopes have obviously favoured the innovations on the high taxonimic level of macro-evolutionary characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.