Epidemiologic studies have documented a 40-50% reduction in incidence of colorectal cancer in individuals taking nonsteroidal antiinflammatory drugs (NSAIDs). Since NSAIDs are known to inhibit cyclooxygenases (COX-1, COX-2), the basic mechanism of their antitumor effects is conceivably the altered metabolism of arachidonic acid and, subsequently, prostaglandins (PGs). Although COX-2, the inducible isoform, is regularly expressed at low levels in colonic mucosa, its activity increases dramatically following mutation of the APC (adenomatous polyposis coli) gene suggesting that beta-catenin/T-cell factor mediated Wnt-signaling activity may regulate COX-2 gene expression. In addition, hypoxic conditions and sodium butyrate exposure may also contribute to COX-2 gene transcription in human cancers. The development of selective COX-2 inhibitors has made it possible to further evaluate the role of COX-2 activity in colorectal carcinogenesis. To date, at least five mechanisms by which COX-2 contributes to tumorigenesis and the malignant phenotype of tumor cells have been identified, including: (1) inhibition of apoptosis; (2) increased angiogenesis; (3) increased invasiveness; (4) modulation of inflammation/immuno-suppression; and (5) conversion of procarcinogens to carcinogens. A clear positive correlation between COX-2 expression and inhibition of apoptosis has been established, associated with increased PGE2 levels resulting in modulation of pro- and anti-apoptotic factors (e.g., bcl-2, MAKs/ras, caspase-3, Par-4). In terms of angiogenesis and invasiveness, COX-2 activity was found to increase the expression of growth factors (e.g., VDEG, PDGF, bFGF) and matrix metalloproteinases (MMPs). Since COX-2 inhibitors have been demonstrated to interfere with tumorigenesis and apoptosis, COX-2 and its gene product may be attractive targets for therapeutic and chemoprotective strategies in colorectal cancer patients. This may lead to new perspectives that by controlling the cancer phenotype, rather than attempting to eradicate all affected cells, may provide significant benefits to the cancer patient.
Interleukin-6 (IL-6) is a member of the pro-inflammatory cytokine family, induces the expression of a variety of proteins responsible for acute inflammation, and plays an important role in the proliferation and differentiation of cells in humans. IL-6 signaling is mediated by building a complex of IL-6, the transmembrane IL-6 receptor (mIL-6R) or with soluble forms of IL-6R (sIL-6R), and the signal-transducing subunit molecule gp130. Therefore, three modes for IL-6 signaling may occur in which IL-6 is binding to mIL-6R (classic), to sIL-6R (trans-signaling), or is joined through IL-6R to gp130 on nearby located cells (trans-presentation). These pathways, and the fact that gp130 is ubiquitously expressed, lead to the pleiotropic functions of IL-6. The control of IL-6 signaling is regulated through the induction of suppressor molecules after activation of the IL-6 pathways as well as through the presence of sIL-6R and gp130 forms in the blood. Vice versa, an overproduction of IL-6 and dysregulation of the IL-6 signaling pathways can result in inflammatory and autoimmune disorders as well as cancer development suggesting that IL-6 plays a significant role in the human cytokine network. Several therapeutic agents have been evaluated for inhibiting the cytokine itself, the signaling via the IL-6 receptor, or target kinases (e.g., JAK/STAT) associated with the signaling pathways. Amongst others, tocilizumab (anti-IL-6R humanized antibody) has been approved for the treatment of rheumatoid arthritis, cytokine release syndrome, and idiopathic multicentric Castleman’s disease (iMCD), whereas siltuximab (an IL-6 antagonist) received approval for iMCD only. Although not all IL-6-associated diseases respond to IL-6 blockade, a better understanding of the underlying mechanisms of the IL-6 pathways may, therefore, help to find the best treatment for IL-6-associated diseases in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.