The antimycotic clotrimazole, a potent inhibitor of the intermediate-conductance calcium-activated K ؉ channel, IKCa1, is in clinical trials for the treatment of sickle cell disease and diarrhea and is effective in ameliorating the symptoms of rheumatoid arthritis. However, inhibition of cytochrome P450 enzymes by clotrimazole limits its therapeutic value. We have used a rational design strategy to develop a clotrimazole analog that selectively inhibits IKCa1 without blocking cytochrome P450 enzymes. A screen of 83 triarylmethanes revealed the pharmacophore for channel block to be different from that required for cytochrome P450 inhibition. The ''IKCa1-pharmacophore'' consists of a (2-halogenophenyl)diphenylmethane moiety substituted by an unsubstituted polar -electron-rich heterocycle (pyrazole or tetrazole) or a ؊C'N group, whereas cytochrome P450 inhibition absolutely requires the imidazole ring. A series of pyrazoles, acetonitriles, and tetrazoles were synthesized and found to selectively block IKCa1.
TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) inhibits the cloned and the native
The lymphocyte K ϩ channel Kv1.3 constitutes an attractive pharmacological target for the selective suppression of terminally differentiated effector memory T (T EM
The lymphocyte potassium channel Kv1.3 is widely regarded as a promising new target for immunosuppression. To identify a potent small-molecule Kv1.3 blocker, we synthesized a series of 5-phenylalkoxypsoralens and tested them by whole-cell patch clamp. The most potent compound of this series, 5-(4-phenylbutoxy)psoralen (Psora-4), blocked Kv1.3 in a use-dependent manner, with a Hill coefficient of 2 and an EC 50 value of 3 nM, by preferentially binding to the C-type inactivated state of the channel. Psora-4 is the most potent small-molecule Kv1.3 blocker known. It exhibited 17-to 70-fold selectivity for Kv1.3 over closely related Kv1-family channels (Kv1.1, Kv1.2, Kv1.4, and Kv1.7) with the exception of Kv1.5 (EC 50 , 7.7 nM) and showed no effect on human ether-a-go-go-related channel, Kv3.1, the calcium-activated K ϩ channels (IKCa1, SK1-SK3, and BK Ca ), or the neuronal Na V 1.2 channel. In a test of in vivo toxicity in rats, Psora-4 did not display any signs of acute toxicity after five daily subcutaneous injections at 33 mg/kg body weight. Psora-4 selectively suppressed the proliferation of human and rat myelin-specific effector memory T cells with EC 50 values of 25 and 60 nM, respectively, without persistently suppressing peripheral blood naive and central memory T cells.
The paper describes the design, synthesis, and testing of inhibitors of folate-synthesizing enzymes and of whole cell cultures of Candida albicans. The target enzymes used were dihydropteroic acid synthase (SYN) and dihydrofolate reductase (DHFR). Several series of new 2,4-diaminopyrimidines were synthesized and tested as inhibitors of DHFR and compared with their activity against DHFR derived from mycobacteria and Escherichia coli. To test for selectivity, also rat DHFR was used. A series of substituted 4-aminodiphenyl sulfones was tested for inhibitory activity against SYN and the I(50) values compared to those obtained previously against Plasmodium berghei- and E. coli-derived SYN. Surprisingly, QSAR equations show very similar structural dependencies. To find an explanation for the large difference in the I(50) values observed for enzyme inhibition (SYN, DHFR) and for inhibition of cell cultures of Candida, mutant strains with overexpressed efflux pumps and strains in which such pumps are deleted were included in the study and the MICs compared. Efflux pumps were responsible for the low activity of some of the tested derivatives, others showed no increase in activity after pumps were knocked out. In this case it may be speculated that these derivatives are not able to enter the cells.
The voltage-gated potassium channel Kv1.3 constitutes a promising new target for the treatment of T-cell-mediated autoimmune diseases such as multiple sclerosis. In this study, we report the discovery of two new classes of Kv1.3 blockers based on the naturally occurring compound khellinone, 5-acetyl-4,7-dimethoxy-6-hydroxybenzofuran: (1) khellinone dimers linked via the alkylation of the 6-hydroxy groups and (2) chalcone derivatives of khellinone formed by Claisen-Schmidt condensation of the 5-acetyl group with aryl aldehydes. In particular, the chalcone 3-(4,7-dimethoxy-6-hydroxybenzofuran-5-yl)-1-phenyl-3-oxopropene (16) and several of its derivatives inhibited Kv1.3 with K(d) values of 300-800 nM and a Hill coefficient of 2, displayed moderate selectivity over other Kv1-family K(+) channels, suppressed T-lymphocyte proliferation at submicromolar concentrations, and showed no signs of acute toxicity in mice. Because of their relatively low molecular weight and lipophilicity and their high affinity to Kv1.3, aryl-substituted khellinone derivatives represent attractive lead compounds for the development of more potent and selective Kv1.3 blocking immunosuppressants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.