The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It utilized only H2 as an electron donor and tetrachloroethene and trichloroethene as electron acceptors in an anaerobic respiration process; it could not grow fermentatively. Acetate served as a carbon source in a defined medium containing iron as the sole trace element, the two vitamins thiamine and cyanocobalamin, and the three amino acids arginine, histidine, and threonine. The cells contained menaquinones and b-type cytochromes. The G+C content of the DNA was 45.3 +/- 0.3 mol%. The cell wall consisted of type-A3gamma peptidoglycan with ll-diaminopimelic acid and one glycine as an interpeptide bridge. The cells are surrounded by an S-layer; an outer membrane was absent. Comparative sequence analysis of the 16S rRNA sequence showed that PER-K23 is related to gram-positive bacteria with a low G+C content of the DNA. Based on the cytological, physiological, and phylogenetic characterization, it is proposed to affiliate the isolate to a new genus, Dehalobacter, with PER-K23 as the type strain of the new species Dehalobacter restrictus.
The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 ؎ 1 kDa, whereas the native molecular mass was 71 ؎ 8 kDa according to size exclusion chromatography in the presence of the detergent octyl--D-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 ؎ 0.1 mol of cobalamin, 0.6 ؎ 0.02 mol of cobalt, 7.1 ؎ 0.6 mol of iron, and 5.8 ؎ 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 ؎ 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The K m values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 ؎ 3.2, 23.7 ؎ 5.2, and 47 ؎ 10 M, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy.Tetrachloroethene (PCE), a frequently detected groundwater contaminant, is used by different bacteria as a terminal electron acceptor in a process called dehalorespiration (10,14,16,20,21,32,35,40,46). Six such isolates belong phylogenetically to the subphylum Firmicutes of the gram-positive bacteria, whereas other isolates are affiliated with phylogenetic groups such as the ␦ and ε subclasses of the Proteobacteria and the green no...
In the anaerobic respiration chain of ''Dehalobacter restrictus,'' dihydrogen functioned as the electron donor and tetrachloroethene (PCE) functioned as the electron acceptor. The hydrogenase faced the periplasm, and the PCE reductase faced the cytoplasmic side of the membrane. Both activities were associated with the cytoplasmic membrane. UV spectroscopy showed that membrane-bound menaquinone (MQ) was reduced by oxidation of H 2 and reoxidized by reduction of PCE, indicating that MQ functions as an electron mediator. Fast proton liberation (t 1/2 ؍ 6 ؎ 2 s) during electron transport from H 2 to PCE and to trichloroethene (TCE) after addition of either PCE or TCE to H 2 -saturated cells resulted in an extrapolated H
Anaerobic bacteria can reductively dehalogenate aliphatic and aromatic halogenated compounds in a respiratory process. Only a few of these bacteria have been isolated in pure cultures. However, long acclimation periods, substrate specificity, high dehalogenation rates, and the possibility to enrich for the dehalogenation activity by subcultivation in media containing an electron donor indicate that many of the reductive dehalogenations in the environment are catalyzed by specific bacteria. Molecular hydrogen or formate appear to be good electron donors for the enrichment of such organisms. Furthermore, systems have to be employed which supply the cultures with the halogenated compounds beyond their toxicity level. All bacteria that are presently available in pure culture and grow with a halogenated compound as electron acceptor are members of new genera. Based on experimental results with the membrane-impermeable electron mediator methyl viologen, a model of the respiration system of Dehalobacter restrictus, a tetrachloroethene-dechlorinating bacterium, is presented. Further studies of the biochemistry and energetics of respiratory-dehalogenating strains will help to understand the mechanisms involved and perhaps reveal the evolutionary origin of the dehalogenating enzyme systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.