This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called ‘marginal agro-ecological zones’ (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe.
No abstract
Low‐cost sustainable biomass availability in the European Union may not be able to meet increasing demand; exploring the option of importing biomass is therefore imperative for the years to come. This article assesses sustainable biomass export potential from Brazil, Colombia, Indonesia, Kenya, Ukraine, and the United States by applying a number of sustainability criteria. Only biomass types with the highest potential are selected, to take advantage of economies of scale, e.g. pulpwood, wood waste, and residues in the United States, and agricultural residues in Ukraine. This study found that, except for the United States, pellet markets in the sourcing regions are largely undeveloped. The export potential depends strongly on pellet mill capacity and assumed growth rates in the pellet industry. Results show that the United States, Ukraine, Indonesia, and Brazil offer the highest biomass export potential. In the Business As Usual 2030 scenario, up to 204 PJ could potentially be mobilized; in the High Export scenario this could increase to 1423 PJ, with 89% of the potential being available for costs ranging from 6.4 to 15 €/GJ. These potentials meet the European Commission requirements for a 70% reduction in greenhouse gas emissions set in the Renewable Energy Directive. The total export potentials do not reflect the net possible import potentials to the European Union, as biomass could be imported to other countries where there is a demand for it, where less strict sustainability requirements are applied, and which are proximate to the sourcing regions, notably South Korea, Japan, and China. © 2018 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd.
Management of switchgrass for bioenergy and forage share some commonalities, of particular interest in bioenergy crop production is: (1) rapid establishment of switchgrass to generate harvestable biomass in the seeding year, (2) highly efficient management of soil and fertilizer N to minimize external energy inputs, and (3) harvest management to maximize yields of lignocellulose. Bioenergy cropping may entail management for multiple services in addition to biomass yield including soil C sequestration, wildlife habitat, landscape management, and water quality protection. Management is a critical factor especially as land classified as marginal or idle land will be emphasized for bioenergy
The fi rst part of this review describes policy developments in the Netherlands since the 1980s around innovations for non-food application of renewable resources. Next, these developments are analyzed using the Strategic Niche Management (SNM) theory. The drivers at the regime level and the quality of the processes at the niche level have increased considerably in the last number of years. The trend toward a much wider use of renewable resources for non-food applications thus seems more robust than it was in the previous century. From the SNM analysis, we derive a number of recommendations for policy-makers active in this fi eld. We also present a previously unpublished stakeholder study performed in 2000 on the factors of success for innovations in this fi eld, and derive from this study recommendations for innovators active in the fi eld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.