A numerical study of a pseudoscalar inflation having an axion-photon-like coupling is performed by solving numerically the coupled differential equations of motion for inflaton and photon mode functions from the onset of inflation to the end of reheating. The backreaction due to particle production is also included self-consistently. We find that this particular inflation model realizes the idea of a warm inflation in which a steady thermal bath is established by the particle production. In most cases this thermal bath exceeds the amount of radiation released in the reheating process. In the strong coupling regime, the transition from the inflationary to the radiation-dominated phase does not involve either a preheating or reheating process. In addition, energy density peaks produced near the end of inflation may lead to the formation of primordial black holes.
In the axion monodromy inflation, the inflation is driven by the axion with super-Planckian field values in a monomial potential with superimposed sinusoidal modulations. The coupling of the axion to massless gauge fields can induce copious particle production during inflation, resulting in large non-Gaussian curvature perturbation that leads to the formation of primordial black holes. In this paper, we explore the parameter space in the axion monodromy inflation model that favors the formation of primordial black holes with masses ranging from 10 8 grams to 20 solar masses. We also study the associated gravitational waves and their detection in pulsar timing arrays and interferometry experiments.
Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.
We study the growth of superhorizon modes in the curvature perturbation during an ultra-slowroll or a large-η phase in single-field inflation. In a simple toy model, we derive the two-point correlation function of the curvature perturbation and show that the requirement for causality restricts the growth rate and hence puts a lower limit on the value of η. The toy model is then realized by considering an inflation potential with an inflection point. Our study is useful to assessing the growth of the curvature perturbation that seeds the formation of primordial black holes.
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.