Radio-frequency plasma enhanced CVD (RF-PECVD) carbon films were grown directly on 4-inch 4H-SiC substrates as a capping layer for MOSFET device applications. An approximately 50-nm-thick CVD carbon capping layer was found to reduce the surface roughness, as determined by atomic force microscopy (AFM). The secondary ion mass spectroscopy (SIMS) depth profile results revealed that carbon capping layer can suppress the dopant out-diffusion on the implanted surface after annealing even at high temperature (1700 °C) for 30 min. The calculated subthreshold swing (S) values of devices with CVD carbon capping layer and photo-resist process (base) measured at room temperature were 460 ± 50 (mV/dec) and 770 ± 70 (mV/dec), respectively. The lower value of 'S' for the device with carbon capping layer was related to the very low density of interface traps at the SiC-SiO2 interface. These results show the potential of CVD carbon as a capping layer for SiC MOSFET device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.