Stroke results in the disruption of tissue architecture and is the third leading cause of death in the United States1. Transplanting scaffolds containing stem cells into the injured areas of the brain has been proposed as a treatment strategy2, and carbon nanotubes show promise in this regard, with positive outcomes when used as scaffolds in neural cells3,4 and brain tissues5. Here, we show that pretreating rats with amine-modified single-walled carbon nanotubes can protect neurons and enhance the recovery of behavioural functions in rats with induced stroke. Treated rats showed less tissue damage than controls and took longer to fall from a rotating rod, suggesting better motor functions after injury. Low levels of apoptotic, angiogenic and inflammation markers indicated that aminemodified single-walled carbon nanotubes protected the brains of treated rats from ischaemic injury.
Alzheimer's disease (AD) is characterized by the deposition of aggregated beta-amyloid (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Aβ neurotoxicity still remain unknown. Here, we show that treatment of Aβ triggers the UPR in the SK-N-SH human neuroblastoma cells. Aβ mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2α pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Aβ neurotoxicity through reducing the activation of eIF2α and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2α pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Aβ treated neurons. These results indicate that PERK-eIF2α pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.