Recently, the rapid and significant progress in the development of various stretchable electronics has triggered intense research interest. Although the remarkable features of transfer printing processes have enabled the use of inorganic crystalline semiconductors in various types of stretchable devices, including solar cells, light‐emitting diodes, circuits, and photodetectors, there are few examples of stretchable electronics using thin film semiconductors. Transfer printing of inorganic amorphous thin film semiconductors remains a challenge because no suitable sacrificial layer is available. To meet this challenge, a water‐soluble germanium oxide sacrificial layer is developed. Stretchable inorganic amorphous thin film solar cells are produced using a transfer printing process with a water‐soluble sacrificial layer. This first attempt to fabricate stretchable solar cells with inorganic amorphous thin film semiconductors significantly broadens the scope of solar cell applications. Moreover, the germanium oxide sacrificial layer can be used in other thin film electronics applications.
The effects of epitaxial materials and solar cell design on the performance of solar cells grown by the multilayer approach are investigated. The novel solar cell structure with a p‐on‐n type configuration suggested exhibits improved uniformity in the photovoltaic performance because of the suppression of Zn diffusion. This approach provides routes to achieve further improvements and acts as a guideline for the commercialization of the multilayer technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.