Ensuring a protection scheme in DC distribution is more difficult to achieve against pole-to-ground fault than in AC distribution system because of the absence of zero crossing points and low line impedance. To complement the major obstacle of limiting the fault current, several compositions have been proposed related to mechanical switching and solid-state switching. Among them, solid-state circuit breakers(SSCBs) are considered a possible solution to limit fast fault current. However, they may cause problems in circuit complexity, reliability and cost-related troubles due to the use of multiple power semiconductor devices and additional circuit configuration to commutate current. This paper proposes the SSCB with a coupled inductor(SSCB-CI) which has symmetrical configuration. The circuit is comprised of passive components like commutation capacitors, a CI and damping resistors. Thus, proposed SSCB-CI offers the advantages of simple circuit configuration and fewer utilized power semiconductor devices than another typical SSCBs in LVDC microgrid. For analysis, six operation states are described for the voltage across main switches and fault current. The effectiveness of the SSCB-CI against a short-circuit fault is proved via simulation and experimental results in a lab-scale prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.