MAM-2201 is a synthetic cannabinoid that is increasingly found in recreational drug abusers and cases of severe intoxication. Thus, characterization of the metabolic pathways of MAM-2201 is necessary to predict individual pharmacokinetics and toxicity differences, and to avoid toxic drug-drug interactions. Collectively, 19 phase 1 metabolites of MAM-2201 were identified using liquid chromatography-Orbitrap mass spectrometry following human liver microsomal incubations in the presence of NADPH: 7 hydroxy-MAM-2201 (M1-M7), 4 dihydroxy-MAM-2201 (M8-M11), dihydrodiol-MAM-2201 (M12), N-(5-hydroxypentyl)-MAM-2201 (M13), hydroxy-M13 (M14), N-dealkyl-MAM-2201 (M15), 2 hydroxy-M15 (M16, M17), MAM-2201 N-pentanoic acid (M18), and hydroxy-M18 (M19). On the basis of intrinsic clearance values in human liver microsomes, hydroxy-MAM-2201 (M1), N-(5-hydroxypentyl)-MAM-2201 (M13), and hydroxy-M13 (M14) were the major metabolites. Based on an enzyme kinetics study using human cDNA-expressed cytochrome P450 (CYP) enzymes and an immunoinhibition study using selective CYP antibodies in human liver microsomes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 enzymes were responsible for MAM-2201 metabolism. The CYP3A4 enzyme played a prominent role in MAM-2201 metabolism, and CYP1A2, CYP2B6, CYP2C8, and CYP2C9 enzymes played major roles in the formation of some metabolites. MAM-2201 is extensively metabolized by multiple CYP enzymes, indicating that MAM-2201 and its metabolites should be used as markers of MAM-2201 abuse and toxicity. Graphical abstract In vitro metabolic pathways of MAM-2201 were characterized in human liver microsomes and recombinant CYPs using LC-HRMS analysis. Total 19 phase I metabolites were identified with predominant contribution of CYP3A4.