Increasing evidence indicates that multiple structures in the brain are associated with intelligence and cognitive function at the network level. The association between the grey matter (GM) structural network and intelligence and cognition is not well understood. We applied a multivariate approach to identify the pattern of GM and link the structural network to intelligence and cognitive functions. Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based morphometry analysis was applied to the imaging data to extract GM structural covariance. We assessed the intelligence, verbal fluency, processing speed, and executive functioning of the participants and further investigated the correlations of the GM structural networks with intelligence and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component and the frontal component were significantly associated with intelligence. The parietal and frontal regions were each distinctively associated with intelligence by maintaining structural networks with the cerebellum and the temporal region, respectively. The cerebellar component was associated with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by demonstrating how each core region for intelligence works in concert with other regions. In addition, we revealed how the cerebellum is associated with intelligence and cognitive functions.
Social factors play a significant role in the health outcomes of those struggling with mental or physical health issues. People with mental illness experience more social stigmatization and receive less concern for their welfare than do those with physical illness. However, the cognitive and neural mechanisms by which such a bias in attitude arises remain unclear. This functional MRI study examined whether a lack of self-other similarity during mental state attribution affects perceivers’ theory of mind and, subsequently, how they value a patient’s welfare. During scanning, participants were asked to respond to an expression of caring and sympathetic concern from either their own perspective or while adopting the perspective of patients labeled physically ill or mentally ill. Participants reported that physically ill patients would share their affective responses to the situations, but mentally ill patients would not. Furthermore, mentalizing about physically ill patients was associated with increased activity in the ventromedial prefrontal cortex (vmPFC), a critical region for empathic concern and value-based decisions. In contrast, mentalizing about mentally ill patients preferentially engaged the dorsal anterior cingulate cortex (dACC) and anterior insula, regions previously implicated in empathic distress, in which activity correlated with individual differences in prejudice control. The findings indicate that a lack of perceived self-other similarity poses a challenge to the theory of mind and thus requires greater cognitive resources and neural computations. This might give rise to stereotyped beliefs about and prejudice against the mentally ill and failure to respond with appropriate empathy and care.
Objective: Numerous reports on neurocognitive functioning deficits in individuals at clinical high risk (CHR) and first-episode psychosis (FEP) patients suggest particular deficits in executive functioning (EF). However, to date, most of the studies have administered a single or a few EF tests to participants, and few investigations have examined the different components of EF to identify specific subdomains of relative strength and weakness. Method: Forty CHR subjects, 85 FEP patients, and 85 healthy controls (HCs) were assessed with a neuropsychological battery to elucidate the profiles of EF in the subdomains of shift, attention, fluency, and planning. Results: In the subdomains of shift, attention, and fluency, CHR individuals and FEP patients showed deficits compared to HC. The post hoc analysis revealed that CHR individuals had comparable attention shifting and phonemic fluency compared to FEP. CHR showed intermediate deficits between FEP and HCs in spatial working memory and semantic fluency, and the largest effect size was observed in semantic fluency both for CHR and FEP. Conclusion: Overall, the findings of this study, in addition to providing detailed profiles of EF in prodromal and early psychosis patients, highlight the informative value of the specific subdomains of semantic fluency and spatial working memory.
Evidence suggests that the cortico-striatalthalamo-cortical circuitry plays an important role in schizophrenia pathophysiology. Cerebellar contribution from deep cerebellar nuclei to the circuitry has not yet been examined. The authors investigated resting-state functional connectivity (RSFC) of cerebellar output nuclei with striatal-thalamiccortical regions in relation to white-matter integrity and regional gray-matter volumes in first-episode psychosis (FEP).Methods: Forty FEP patients and 40 age-and gendermatched healthy control subjects (HCs) participated. RSFC between cerebellar nuclei and striatal-thalamic-cortical regions was examined. Diffusion tensor imaging and volumetric scans were examined for possible structural constraints on RSFC. The authors also examined relationships between neuroimaging variables and cognitive and clinical measures.Results: FEP patients, compared with HCs, exhibited decreased RSFC between the left fastigial nucleus and right putamen, which was associated with poor letter fluency performance and lower global assessment of functioning scores. By contrast, patients showed widespread increased accumbens network connectivity in the left nucleus. The authors further observed both hypo-and hyper-RSFC between the cerebellar nuclei and fronto-parietal areas in patients, independent of striatal activity. Finally, the authors found impaired integrity of the left superior cerebellar peduncle and decreased bilateral putamen volume in patients, whereas structural-functional relationships found in HCs were absent in patients. Conclusions:This study provides evidence of disordered RSFC of cerebellar output nuclei to the striatum and neocortex at the early stage of schizophrenia. Furthermore, dysfunctional cerebellar influences on fronto-parietal areas that are independent of striatal dysfunction in patients with FEP were observed. The results suggest that cortico-striatal abnormalities in patients with FEP are produced by abnormal cerebellar influences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.