This paper investigates the controllable magnetorheological (MR) mount for the marine diesel-generator (D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced to below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, semi-active vibration isolation system needs to be developed. To the aim, the valve (flow) mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, excitation test was conducted and the dynamic characteristics were identified. Since damping property of the MR fluid is changed by the applied magnetic field strength and excitation frequency, responses to changing applied currents and frequencies were obtained. From the results, damping performance of the MR mount was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.