With the increase in the performance of deep learning models, the model parameter has increased exponentially. An increase in model parameters leads to an increase in computation and training time, i.e., an increase in training cost. To reduce the training cost, we propose Compositional Intelligence (CI). This is a reuse method that combines pre-trained models for different tasks. Since the CI uses a well-trained model, good performance and small training cost can be expected in the target task. We applied the CI to the Image Captioning task. Compared to using a trained feature extractor, the caption generator is usually trained from scratch. On the other hand, we pre-trained the Transformer model as a caption generator and applied CI, i.e., we used a pre-trained feature extractor and a pre-trained caption generator. To compare the training cost of the From Scratch model and the CI model, early stopping was applied during fine-tuning of the image captioning task. On the MS-COCO dataset, the vanilla image captioning model reduced training cost by 13.8% and improved performance by up to 3.2%, and the Object Relation Transformer model reduced training cost by 21.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.