The use of a guide-tube and bluff-body with an advanced atmospheric pressure plasma source is investigated for the low-temperature synthesis of single-crystalline high-density plasma polymerized pyrrole (pPPy) nano-materials on glass and flexible substrates. Three process parameters, including the position of the bluff-body, Ar gas flow rate, and remoteness of the substrate from the intense and broadened plasma, are varied and examined in detail. Plus, for an in-depth understanding of the flow structure development with the guide-tube and bluff-body, various numerical simulations are also conducted using the same geometric conditions as the experiments. As a result, depending on both the position of the bluff-body and the Ar gas flow rate, an intense and broadened plasma as a glow-like discharge was produced in a large area. The production of the glow-like discharge played a significant role in increasing the plasma energy required for full cracking of the monomers in the nucleation region. Furthermore, a remote growth condition was another critical process parameter for minimizing the etching and thermal damage during the plasma polymerization, resulting in single- and poly-crystalline pPPy nanoparticles at a low temperature with the proposed atmospheric pressure plasma jet device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.