Zero-valent iron nanoparticles (nano-Fe0) in aqueous solution rapidly inactivated Escherichia coli (E. coli). A strong bactericidal effect of nano-Fe0 was found under deaerated conditions, with a linear correlation between log inactivation and nano-Fe0 dose (0.82 log inactivation / mg/L nano-Fe0 · hr). The inactivation of E. coli under air saturation required much higher nano-Fe0 doses due to the corrosion and surface oxidation of nano-Fe0 by dissolved oxygen. Significant physical disruption of the cell membranes was observed in E. coli exposed to nano-Fe0, which may have caused the inactivation, or enhanced the biocidal effects of dissolved iron. The reaction of Fe(II) with intracellular oxygen or hydrogen peroxide also may have induced oxidative stress by producing reactive oxygen species. The bactericidal effect of nano-Fe0 was a unique property of nano-Fe0, which was not observed in other types of iron-based compounds.
Biosensor
systems for wearable continuous monitoring are desired
to be developed into conformal patch platforms. However, developing
such patches is very challenging owing to the difficulty of imparting
materials and components with both high stretchability and high performance.
Herein, we report a fully stretchable microfluidics-integrated glucose
sensor patch comprised of an omnidirectionally stretchable nanoporous
gold (NPG) electrochemical biosensor and a stretchable passive microfluidic
device. A highly electrocatalytic NPG electrode was formed on a stress-absorbing
3D micropatterned polydimethylsiloxane (PDMS) substrate to confer
mechanical stretchability, high sensitivity, and durability in non-enzymatic
glucose detection. A thin, stretchable, and tough microfluidic device
was made by embedding stretchable cotton fabric as a capillary into
a thin polyurethane nanofiber-reinforced PDMS channel, enabling collection
and passive, accurate delivery of sweat from skin to the electrode
surface, with excellent replacement capability. The integrated glucose
sensor patch demonstrated excellent ability to continuously and accurately
monitor the sweat glucose level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.