Extreme temperature events have a significant impact on human life and property. Since the Korean Peninsula is affected by the high variability of the East Asian summer monsoon system, it is difficult to predict extreme temperature events skillfully. Here, we construct an empirical model to investigate the interannual variation of the frequency of summer extreme temperature events over South Korea by identifying predictors (explanatory variables) from ocean boundary conditions. The selected explanatory variables are sea surface temperature anomalies (SSTAs) over the North Atlantic, the western North Pacific, and the eastern North Pacific. The cross-validated correlation skill of the statistical model constructed using a 23-yr dataset is estimated to be 0.77. A common feature that all three explanatory variables contain is the development of an anticyclonic circulation anomaly over the Korean Peninsula. The North Atlantic SSTA predictor acts as a forcing mechanism for the generation of Rossby wave trains downstream, developing an anticyclonic circulation anomaly in the lower and upper troposphere over the Korean Peninsula. The western North Pacific (WNP) warm SSTA predictor induces a cyclonic circulation anomaly over the WNP and an anticyclonic circulation anomaly over the Korean Peninsula, resembling the Pacific–Japan teleconnection mechanism that represents the northward Rossby wave propagation over the western Pacific. Through air–sea interaction, the tripolar SSTA pattern in the eastern North Pacific representing the North Pacific gyre oscillation induces two opposite precipitation anomalies in the equatorial Maritime Continent and the Philippine Sea. These diabatic anomalies excite northward-propagating Rossby waves that form a cyclonic circulation anomaly in the WNP area and an anticyclonic anomaly over the Korean Peninsula.
The Arctic near-surface atmosphere has warmed at more than twice the rate of the global average over recent decades, while summer sea ice coverage has reduced by around 50% (Walsh, 2014). The positive ice-albedo feedback along with several other feedback mechanisms have contributed to these rapid changes (Goosse et al., 2018;Serreze & Barry, 2014). Because the Arctic climate is generally dry, where column-integrated water vapor on seasonal time scales is less than ∼20 mm even in the wettest summer (Rinke et al., 2019;Serreze & Barry, 2014;Serreze et al., 1995), winter snow accumulation is generally limited to ∼20-30 cm in the Eurasian and the Pacific Seas (
The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the-art sea ice models, we show that typical winter snowfall (snow water equivalent) anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies of ~5 W m-2 can cause basin-wide sea ice thinning by around 5 cm in the following spring over the Eurasian-Pacific Seas. In extreme cases, this is followed by a shrinking of summer ice extent. In the winter of 2016–17, anomalously strong warm/moist air transport combined with ~2.5 cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ~10 cm and decreased the following summer sea ice extent by 5–30%. This study suggests that small changes in the pattern and volume of winter snowfall can strongly impact the sea ice thickness and extent in the following seasons.
The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the art sea ice models, we show that typical winter snowfall anomalies of 1.0 cm, accompanied by positive downward longwave radiation anomalies of ~5 W m-2 can decrease sea ice thickness by around 5 cm in the following spring over the Eurasian Seas. This basin-wide ice thinning is followed by a shrinking of summer ice extent in extreme cases. In the winter of 2016–17, anomalously strong warm/moist air transport combined with ~2.5 cm increase in snowfall decreased spring ice thickness by ~10 cm and decreased the following summer sea ice extent by 5–30%. Projected future reductions in the thickness of Arctic sea ice and snow will amplify the impact of anomalous winter snowfall events on winter sea ice growth and seasonal sea ice thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.