An attempt to confirm the reported direct one-proton and two-proton decays of the (21+) isomer at 6.7(5) MeV in 94 Ag has been made. The 0.39(4) s half-life of the isomer permitted use of a helium-jet system to transport reaction products from the 40 Ca + nat Ni reaction at 197 MeV to a low-background area; 24 gas ∆E-(Si) E detector telescopes were used to identify emitted protons down to 0.4 MeV. No evidence was obtained for two-proton radioactivity with a summed energy of 1.9(1) MeV and a branching ratio of 0.5(3)%. Two groups of one-proton radioactivity from this isomer had also been reported; our data confirm the lower energy group at 0.79(3) MeV with its branching ratio of 1.9(5)%.
Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.
Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.
PurposeThe purpose of this study was to assess current levels of awareness of clinical trials (CTs), perceptions regarding their benefits and willingness to participate to CTs among Korean cancer patients.Materials and MethodsFrom December 2012 to August 2015, we distributed questionnaires to cancer patients receiving systemic anti-cancer therapy at Seoul National University Hospital, Seoul, Korea.ResultsA total of 397 out of 520 requested patients (76.3%) responded to the survey. Among the 397 patients, 62.5% were female and the median age was 52 years. Overall, 97.4% (387/397) answered that they have at least heard of CTs. When asked about their level of awareness, 23.8% (92/387) answered that they could more than roughly explain about CTs. The average visual analogue scale score of CT benefit in all patients was 6.43 (standard deviation, 2.20). Patients who were only familiar with the term without detailed knowledge of the contents had the least expectation of benefit from CTs (p=0.015). When asked about their willingness to participate in CTs, 56.7% (225/397) answered positively. Patients with higher levels of awareness of CTs showed higher willingness to participate (p < 0.001). Heavily treated patients and patients with previous experience regarding CTs also showed a higher willingness to participate (p < 0.001). The perceived benefit of CTs was higher in the group willing to participate (p=0.026).ConclusionThe patient’s level of awareness regarding CTs was positively related to the positive perception and willingness to participate. Although the general awareness of CTs was high, a relatively large proportion of patients did not have accurate knowledge; therefore, proper and accurate patient education is necessary.
The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL) fibers modified using the γ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc) was grafted onto the PCL fibers by the γ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL). PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP) activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.