In this paper, a self-healable nanocomposite based on the Diels-Alder reaction is developed. A graphene-based nanofiller is introduced to improve the self-healing efficiency, as well as the mechanical properties of the nanocomposite. Graphene oxide (GO) is modified with maleimide functional groups, and the maleimide-modified GO (mGO) enhanced the compatibility of the polymer matrix and nanofiller. The tensile strength of the nanocomposite containing 0.030 wt% mGO is improved by 172%, compared to that of a polymer film incorporating both furan-functionalized polymer and bismaleimide without any nanofiller. Moreover, maleimide groups of the surface on mGO participate in the Diels-Alder reaction, which improves the self-healing efficiency. The mechanical and self-healing properties are significantly improved by using a small amount of mGO.
Epoxy resin has a versatile set of applications due to its excellent properties. However, its easily flammable property limits further applications. A bio-based flame retardant, cardanyl diphenylphosphate (CDPP), was successfully synthesized via condensation reaction between cardanol and diphenyl phosphoryl chloride. The chemical structure of CDPP was confirmed via 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. To overcome the flammable property of epoxy resin, different amounts of CDPP were incorporated into the epoxy resin. The thermal stability of epoxy resin with CDPP was reduced due to its phosphorus component, which had a relatively weak bond. Meanwhile, the measured char residue of epoxy resin with CDPP was increased compared to its calculated value, which indicated that CDPP promoted the formation of char residue. The limiting oxygen index of epoxy resin with CDPP was enhanced as the amount of CDPP increased from 22.1% for EP0 to 32.7% for EP10. The maximum value of the heat release rate per unit area and total heat release values of EP10 decreased by 23.23% and 12.02%, respectively, as compared to those of EP0. Additionally, single lap shear strength confirmed the improvement in the adhesion property of EP5. The lap shear strength increased to 7.19 MPa for EP5 compared to 6.27 MPa for EP0. This behavior might be due to the higher polarity of the phosphorus components. Based on the findings gathered in the present study, the incorporation of a bio-based flame retardant (CDPP) in epoxy resin has the potential for improving flame retardancy and adhesion property, which will be promising for the industrial area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.