Comparisons between direct-current (dc) and radio-frequency (rf) gas jet-boosted glow discharge atomic emission spectrometry (GD-AES) have been made with regard to fundamental characteristics and analytical performance. The study of fundamental characteristics includes the voltage—current relationship; a gas flow rate of 0 mL/min to 800 mL/min and pressures ranging from 3 Torr to 5 Torr on dc bias potential; the sample weight loss; and the emission intensity. The dc-powered glow discharge at 90 mA/450 V and 60 mA/710 V at 5 Torr shows 3 × more sample weight loss than the rf discharge at 40 W. Radio-frequency glow discharge shows a short-term precision of <1% relative standard deviation (RSD) and a long-term stability of <5% RSD for both major and trace element lines. Both rf and dc show calibration curves that are linear over 2–3 orders of magnitude, with a general improvement in linearity from ratioing the signal to an internal standard of the matrix. Further improvement of linearity was possible by correcting the bias potential in the rf glow discharge. Limits of detection (LODs) for rf are tens of parts per billion from many trace elements in low-alloy steel, which is one order of magnitude improvement over those for dc.
The design or dimension of micro-supercapacitor electrodes is an important factor that determines their performance. In this study, a microsupercapacitor was precisely fabricated on a silicon substrate by irradiating an imprinted furan micropattern with a CO2 laser beam under ambient conditions. Since furan is a carbon-abundant polymer, electrically conductive and porous carbon structures were produced by laser-induced pyrolysis. While the pyrolysis of a furan film in a general electric furnace resulted in severe cracks and delamination, the laser pyrolysis method proposed herein yielded porous carbon films without cracks or delamination. Moreover, as the imprinting process already designated the furan area for laser pyrolysis, high-precision patterning was achieved in the subsequent laser pyrolysis step. This two-step process exploited the superior resolution of imprinting for the fabrication of a laser-pyrolyzed carbon micropattern. As a result, the technical limitations of conventional laser direct writing could be overcome. The laser-pyrolyzed carbon structure was employed for microsupercapacitor electrodes. The microsupercapacitor showed a specific capacitance of 0.92 mF/cm2 at 1 mA/cm2 with a PVA-H2SO4 gel electrolyte, and retained an up to 88% capacitance after 10,000 charging/discharging cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.