A recent report revealed that phosphoinositide-3-kinase, catalytic, alpha (PIK3CA) gene is somatically mutated in several types of human cancer, suggesting the mutated PIK3CA gene as an oncogene in human cancers. However, because the previous report focused the mutational search primarily on colon cancers, the data on PIK3CA mutations in other types of human cancers have been largely unknown. Here, we performed mutational analysis of the PIK3CA gene by polymerase chain reaction-single-strand conformation polymorphism assay in 668 cases of common human cancers, including hepatocellular carcinomas, acute leukemias, gastric carcinomas, breast carcinomas, and non-small-cell lung cancers. We detected PIK3CA somatic mutations in 26 of 73 hepatocellular carcinomas (35.6%), 25 of 93 breast carcinomas (26.9%), 12 of 185 gastric carcinomas (6.5%), one of 88 acute leukemias (1.1%), and three of 229 non-small-cell lung cancers (1.3%). Some of the PIK3CA mutations were detected in the early lesions of breast cancer carcinoma, hepatocellular carcinoma, and gastric carcinomas, suggesting that PIK3CA mutation may occur independent of stage of the tumors. The high incidence and wide distribution of PIK3CA gene mutation in the common human cancers suggest that alterations of lipid kinase pathway by PIK3CA mutations contribute to the development of human cancers.
Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD 1 )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G 1 /S phase and to suppress growth. This treatment restored p21, induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21 WAF1/Cip1 -dependent G 1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2 0 -deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. Conclusion: Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21 WAF1/Cip1 by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013;57:1055-1067 S irtuins, also designated as class III histone deacetylases, are nicotinamide adenine dinucleotide oxidized form (NAD þ )-dependent deacetylases that target histone and nonhistone proteins and are implicated in the control of a wide range of biological processes such as apoptosis, stress responses, DNA repair, cell cycle, metabolism, and senescence. 1 The importance of sirtuins is demonstrated by their role in several major human pathologic conditions, including cancer, diabetes, cardiovascular disease, and neurodegenerative disease. 2 Mammals express seven sirtuins (denoted SIRT1-7) that have considerably different functions and catalytic activities. 3 The most closely related to yeast Sir2 and the best-characterized sirtuin, Abbreviations: 5-aza-dC, 5-aza-2 0 -deoxycytidine; CDKN1A, cyclin dependent kinase 1A;
Fas (Apo-1/CD95) is a cell-surface receptor involved in cell death signaling. The key role of the Fas system in negative growth regulation has been studied mostly within the immune system, and somatic mutations of Fas gene in cancer patients have been described solely in lymphoid-lineage malignancies. However, many nonlymphoid tumor cells have been found to be resistant to Fas-mediated apoptosis, which suggests that Fas mutations, one of the possible mechanisms for Fas-resistance, may be involved in the pathogenesis of non-lymphoid malignancies as well. In this study, we have analysed the entire coding region and all splice sites of the Fas gene for the detection of the gene mutations in 65 human nonsmall cell lung cancers by polymerase chain reaction, single strand conformation polymorphism and DNA sequencing. Overall, ®ve tumors (7.7%) were found to have the Fas mutations, which were all missense mutations. Four of the ®ve mutations identi®ed were located in the cytoplasmic region (death domain) known to be involved in the transduction of an apoptotic signal and one mutation was located in the transmembrane domain. This is the ®rst report on the Fas gene mutations in non-lymphoid malignancies, and the data presented here suggests that alterations of the Fas gene might lead to the loss of its apoptotic function and contribute to the pathogenesis of some human lung cancers.
ObjectivesTo assess the efficacy and safety of switching from the infliximab reference product (RP; Remicade) to its biosimilar CT-P13 (Remsima, Inflectra) or continuing CT-P13 in patients with rheumatoid arthritis (RA) for an additional six infusions.MethodsThis open-label extension study recruited patients with RA who had completed the 54-week, randomised, parallel-group study comparing CT-P13 with RP (PLANETRA; NCT01217086). CT-P13 (3 mg/kg) was administered intravenously every 8 weeks from weeks 62 to 102. All patients received concomitant methotrexate. Endpoints included American College of Rheumatology 20% (ACR20) response, ACR50, ACR70, immunogenicity and safety. Data were analysed for patients who received CT-P13 for 102 weeks (maintenance group) and for those who received RP for 54 weeks and then switched to CT-P13 (switch group).ResultsOverall, 302 of 455 patients who completed the PLANETRA study enrolled into the extension. Of these, 158 had received CT-P13 (maintenance group) and 144 RP (switch group). Response rates at week 102 for maintenance versus switch groups, respectively, were 71.7% vs 71.8% for ACR20, 48.0% vs 51.4% for ACR50 and 24.3% vs 26.1% for ACR70. The proportion of patients with antidrug antibodies was comparable between groups (week 102: 40.3% vs 44.8%, respectively). Treatment-emergent adverse events occurred in similar proportions of patients in the two groups during the extension study (53.5% and 53.8%, respectively).ConclusionsComparable efficacy and tolerability were observed in patients who switched from RP to its biosimilar CT-P13 for an additional year and in those who had long-term CT-P13 treatment for 2 years.Trial registration numberNCT01571219; Results.
The results suggest that genetic and epigenetic alteration of KLF6 may play a minor role in the development of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.