HighlightOsCYP19-4 is a novel apoplastic immunophilin that plays a role in developmental acclimation and cold stress, probably via regulation of auxin transport.
In the present study, we compared the pharmacological properties of structurally similar benzylisoquinoline compounds, papaverine, higenamine, and GS 389, using isolated rat aorta and atrial preparations. The three benzylisoquinoline compounds, concentration dependently, relaxed phenylephrine (3 microM) induced contraction of rat aortic rings, with the rank order of potency being higenamine > papaverine > GS 389. They also relaxed high K+ (60 mM) induced contraction, with the rank order of potency being papaverine > GS 389 >> higenamine. The relaxation was not modified by the presence of endothelium. To assess whether these compounds directly interfere with Ca2+ influx, the effects of these compounds on Ca(2+)-induced contraction in Ca(2+)-free media were examined. Among the three compounds, papaverine most strongly inhibited Ca(2+)-induced contraction of both K+ stimulated and phenylephrine-stimulated aorta. Higenamine was least potent in inhibition of Ca(2+)-induced contraction in high K+ depolarized aorta. In atrial tissues, lower concentrations of papaverine increased spontaneous beats and isometric tension, whereas above 30 microM its action was reversed. GS 389 decreased heart rate without affecting the contractility. On the other hand, higenamine concentration dependently increased both heart rate and isometric tension, as well as cyclic AMP levels in atrial tissues as a result of beta-receptor activation. Cyclic AMP and cyclic GMP dependent phosphodiesterases from rat atrial and ventricular tissue homogenates were inhibited by papaverine and GS 389, but not by higenamine. These results suggest that calcium antagonistic action of these compounds is at least in part responsible for vasodilation action, but not for cardiac action.(ABSTRACT TRUNCATED AT 250 WORDS)
BackgroundSoman, a potent irreversible acetylcholinesterase (AChE) inhibitor, induces delayed neuronal injury by reactive oxygen species (ROS). Midazolam is used in patients with pathologic effects of oxidative stresses such as infection, hemodynamic instability and hypoxia. We investigated whether midazolam protects the Central Nervous System (CNS) from soman intoxication. The present study was performed to determine whether midazolam protects B35 cells from ROS stress for the purpose of exploring an application of midazolam to soman intoxication.MethodsGlucose oxidase (GOX) induced ROS stress was used in a B35 neuroblastoma cell model of ROS induced neuronal injury. To investigate the effect of midazolam on cell viability, LDH assays and fluorescence activated cell sorting (FACS) analysis was performed. Western blotting was used for evaluating whether Akt-phosphorylation is involved in cell-protective effects of midazolam.ResultsGOX derived ROS injury decreased cell viability about 1.6-2 times compared to control; midazolam treatment (5 and 10 µg/ml) dose-dependently increased cell viability during ROS injury. On western blots, Akt-phosphorylation was induced during pretreatment with midazolam; it was diminished during co-treatment with LY-294002, an inhibitor of Akt-phosphorylation. FACS analysis confirmed that the cell protective effect of midazolam is mediated by an anti-apoptotic effect. GOX-induced apoptosis was inhibited by midazolam and the finding was diminished by LY-294002.ConclusionsMidazolam protects neuronal cells from GOX-induced ROS injury; this effect is mediated by an anti-apoptotic effect through Akt-phosphorylation. This shows that midazolam may be useful in soman intoxication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.