Soybeans are recognized as one of the "big 8" food allergens. IgE antibodies from soybean-sensitive patients recognize more than 15 soybean proteins. Among these proteins only the alpha-subunit of beta-conglycinin, but not the highly homologous alpha'- and beta-subunits, has been shown to be a major allergenic protein. The objective of this study was to examine if the alpha'- and beta-subunits of beta-conglycinin can also serve as potential allergens. Immunoblot analysis using sera collected from soybean-allergic patients revealed the presence of IgE antibodies that recognized several soy proteins including 72, 70, 52, 34, and 21 kDa proteins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) analysis of trypsin-digested 72, 70, and 52 kDa proteins indicated that these proteins were the alpha'-, alpha-, and beta-subunits of beta-conglycinin, respectively. Additionally, purified alpha'-, alpha-, and beta-subunits of beta-conglycinin were recognized by IgE antibodies present in the soybean-allergic patients. The IgE reactivity to the beta-subunit of beta-conglycinin was not abolished when this glycoprotein was either deglycosylated using glycosidases or expressed as a recombinant protein in Escherichia coli . The results suggest that in addition to the previously recognized alpha-subunit of beta-conglycinin, the alpha'- and beta-subunits of beta-conglycinin also are potential food allergens.
Several gram-negative plant and animal pathogenic bacteria have evolved a type III secretion system (TTSS) to deliver effector proteins directly into the host cell cytosol. Sinorhizobium fredii USDA257, a symbiont of soybean and many other legumes, secretes proteins called Nops (nodulation outer proteins) into the extracellular environment upon flavonoid induction. Mutation analysis and the nucleotide sequence of a 31.2-kb symbiosis (sym) plasmid DNA region of USDA257 revealed the existence of a TTSS locus in this symbiotic bacterium. This locus includes rhc (rhizobia conserved) genes that encode components of a TTSS and proteins that are secreted into the environment (Nops). The genomic organization of the TTSS locus of USDA257 is remarkably similar to that of another broad-host range symbiont, Rhizobium sp. strain NGR234. Flavonoids that activate the transcription of the nod genes of USDA257 also stimulate the production of novel filamentous appendages known as pili. Electron microscope examination of isolated pili reveals needle-like filaments of 6 to 8 nm in diameter. The production of the pili is dependent on a functional nodD1 and the presence of a nod gene-inducing compound. Mutations in several of the TTSS genes negate the ability of USDA257 to elaborate pili. Western blot analysis using antibodies raised against purified NopX, Nop38, and Nop7 reveals that these proteins were associated with the pili. Mutations in rhcN, rhcJ, rhcC, and ttsI alter the ability of USDA257 to form nodules on Glycine max and Macroptilium atropurpureum.
Monoclinic gallium oxide nanowires are prepared here by arc discharge of GaN powder in the presence of a small amount of transition metal catalyst. The nanowires are characterized by X‐ray diffraction, energy dispersive X‐ray spectroscopy, and Raman spectroscopy, and evidence as to the mechanism of their formation (shown in the Figure) is obtained by high‐resolution transmission electron microscopy.
Neurorehabilitation for stroke is important for upper limb motor recovery. Conventional rehabilitation such as occupational therapy has been used, but novel technologies are expected to open new opportunities for better recovery. Virtual reality (VR) is a technology with a set of informatics that provides interactive environments to patients. VR can enhance neuroplasticity and recovery after a stroke by providing more intensive, repetitive, and engaging training due to several advantages, including: (1) tasks with various difficulty levels for rehabilitation, (2) augmented real-time feedback, (3) more immersive and engaging experiences, (4) more standardized rehabilitation, and (5) safe simulation of real-world activities of daily living. In this comprehensive narrative review of the application of VR in motor rehabilitation after stroke, mainly for the upper limbs, we cover: (1) the technologies used in VR rehabilitation, including sensors; (2) the clinical application of and evidence for VR in stroke rehabilitation; and (3) considerations for VR application in stroke rehabilitation. Meta-analyses for upper limb VR rehabilitation after stroke were identified by an online search of Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed. We expect that this review will provide insights into successful clinical applications or trials of VR for motor rehabilitation after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.