s' homework feedback, homework purpose and achievement goal orientations were statistic ally associated with the homework learning types. The students with the more adaptive h omework learning types tended to have a mastery-goal orientation and learning-oriented homework purpose. Also they reported to have more homework feedback from their teach ers. These findings shed some light on the generally inconsistent pattern of results on ho mework research and also emphasize the value of the person-centered approach for home work research in order to gain a better understanding of homework time. Finally implicati ons for further study were discussed.
A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition, various design factors and interaction effects between intraclass correlation (ICC) and misspecification type (MT) on their performance were considered. The simulation results demonstrate that the LS outperformed the SI in detecting model misspecification at the between-group level even in the MCFA model with different factor structures across levels. Especially, the performance of LS fit indices depended on the ICC, group size (GS), or MT. More specifically, the results are as follows. First, the performance of root mean square error of approximation (RMSEA) was more promising in detecting misspecified between-level models as GS or ICC increased. Second, the effect of ICC on the performance of comparative fit index (CFI) or Tucker–Lewis index (TLI) depended on the MT. Third, the performance of standardized root mean squared residual (SRMR) improved as ICC increased and this pattern was more clear in structure misspecification than in measurement misspecification. Finally, the summary and implications of the results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.