Non-linear constitutive models of the elastic forces for a hyperelastic material are presented. Three elastic force models including Neo-Hookean, Mooney-Riblin 2nd, and Yeoh models are derived based on non-linear continuum mechanics. Elastic forces are applied to the three-dimensional absolute nodal coordinate beam element, and the transient response of the cantilever beam is analyzed. Simulation results are compared to experiment data, and the dynamic characteristics of elastic force models presented in this paper are discussed.
Hot judder characteristics of a ventilated disc brake system are discussed. Three dimensional finite element models of the ventilated disc, pads and pistons are created, and a fully coupled thermo-mechanical analysis of the hot judder phenomenon of the disc brake system is performed using SAMCEF. The brake dynamo test is carried out according to the high speed judder test mode. The evolution of the temperature distribution on the disc surface is described, and the hot spot generation process is investigated. The simulation results such as the maximum disc temperature, BTV are compared to the data from the dynamo test, and the reliabilities of the analysis technique and simulation model presented in this paper are verified.
This paper presents an analysis method to estimate the thermal performance of a disc in a vehicle considering braking conditions and the characteristics of hydraulic devices such as the booster, master cylinder and proportional valve. The whole braking pressure transfer process in the hydraulic brake system from its generating by the pedal to action on the pad is analytically determined. The heat flux generated in the disc brake module is calculated by assuming that the braking energy changes into thermal energy. Heat flux is applied to the finite element disc model, and the temperature rise and deformation of a disc are estimated by performing the thermo-mechanical analysis. The analysis results are discussed and the analytical process and simulation model are verified.
Thermal energy generated by the friction between the disc and pad is transferred to both components and causes thermal expansion of material of each component, and futher affects the friction contact condition. This is the main factor of the thermoelastic instability (TEI) of a disc brake. In this study, TEI is analyzed using the finite element analysis technique. Three dimensional thermo-mechanical analysis model of the disc brake system is created. An intermediate processor based on the staggered approach is used to exchange analysis results: temperature, friction contact power, nodal displacement and deformation. Disc thickness variation (DTV) and temperature distribution of the disc are calculated, and the tendency and meaning of the results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.