In this work, multivariate heterogeneous autoregressive-realized volatility (HAR-RV) models are discussed with their least squares estimations. We consider multivariate HAR models of order p with q multiple assets to explore the relationships between two or more assets’ volatility. The strictly stationary solution of the HAR(p,q) model is investigated as well as the asymptotic normality theories of the least squares estimates are established in the cases of i.i.d. and correlated errors. In addition, an exponentially weighted multivariate HAR model with a common decay rate on the coefficients is discussed together with the common rate estimation. A Monte Carlo simulation is conducted to validate the estimations: sample mean and standard error of the estimates as well as empirical coverage and average length of confidence intervals are calculated. Lastly, real data of volatility of Gold spot price and S&P index are applied to the model and it is shown that the bivariate HAR model fitted by selected optimal lags and estimated coefficients is well matched with the volatility of the financial data.
Abstract:The Crank-Nicolson method can be used to solve the Black-Scholes partial differential equation in one-dimension when both accuracy and stability is of concern. In multi-dimensions, however, discretizing the computational grid with a Crank-Nicolson scheme requires significantly large storage compared to the widely adopted Operator Splitting Method (OSM). We found that symmetrizing the system of equations resulting from the Crank-Nicolson discretization help us to use the standard pre-conditioner for the iterative matrix solver and reduces the number of iterations to get an accurate option values. In addition, the number of iterations that is required to solve the preconditioned system, resulting from the proposed iterative Crank-Nicolson scheme, does not grow with the size of the system. Thus, we can effectively reduce the order of complexity in multidimensional option pricing. The numerical results are compared to the one with implicit Operator Splitting Method (OSM) to show the effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.