The data demonstrate a novel role for albumin in the formation of cytoplasmic vitamin A lipid droplets in stellate cells, and suggest that albumin may have a direct influence on stellate cell activation.
Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.
Free fatty acid-induced lipotoxicity via increased endoplasmic reticulum (ER) stress and hepatocyte apoptosis is a key pathological mechanism of non-alcoholic steatohepatitis. A role of hypoxia-inducible factor 1α (HIF-1α) in this process has been suggested, but direct evidence is lacking. Here, we used HepG2 cells as a model to study whether HIF-1α can reduce palmitic acid-induced lipotoxicity and ER stress. In HepG2 cells treated with 500 µM palmitic acid, HIF-1α expression increased transiently, the decline was associated with increased cleaved caspase-3 expression. Overexpression and knockdown of HIF-1α decreased and exacerbated, respectively, palmitic acid-induced lipoapoptosis. The overexpression also blunted upregulation of the ER stress markers, C/EBP homologous protein (CHOP) and chaperone immunoglobulin heavy chain binding protein (Bip), while the knockdown increased the level of CHOP. In line with this, CHOP promoter activity decreased following HIF-1α binding to the CHOP promoter hypoxia response element. These results indicate that hepatocyte lipotoxicity is associated with decreased HIF-1α expression. It also suggests that upregulation of HIF-1α can be a possible strategy to reduce lipotoxicity in non-alcoholic fatty liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.