BackgroundDetermination of infection rates of snail populations is one of the basic tools for epidemiological studies of snail borne diseases. In this study, we opted to determine the trematode infection of freshwater snails in the Omo-Gibe River Basin, southwest Ethiopia.MethodsWe collected snail samples from 130 observation sites in lakes, wetlands, rivers, reservoirs and irrigation canals surveyed during the dry season (March to May) in 2016. The snail samples were examined for trematode infections by cercarial shedding immediately after collection. Habitat conditions, water quality, human water contact practices and other human activities were assessed at each survey site. A redundancy analysis (RDA) was used to examine the relationship between cercarial infection and environmental variables. The statistical significance of eigenvalues and cercariae-environment correlations generated by the RDA were tested using Monte Carlo permutations at 499 permutations.ResultsA total of 3107 snails belonging to five species were collected. The most abundant species was Biomphalaria pfeifferi, representing 66% of the total collection. Overall, 109 (3.6%) of the snails were found infected with trematodes (cercariae). Biomphalaria pfeifferi was found to be the most highly infected, accounting 85% of all infected snails. A total of eight morphologically different types of cercariae were recorded, which included: Echinostoma cercariae, brevifurcate apharyngeate distome cercariae, amphistome cercariae, brevifurcate apharyngeate monostome cercariae, xiphidiocercariae, longifurcate pharyngeate distome cercariae, strigea cercariae and unidentified cercariae. Brevifurcate apharyngeate distome cercariae, and Echinostoma cercariae were the most abundant cercariae, accounting for 36 and 34% of all infection, respectively. The mean concentration of water conductivity and 5 days biological oxygen demand were higher in irrigation canals and lake sampling points. Human activities such as open field defecation, urination, livestock grazing, farming, and swimming were highly correlated with trematode infection.ConclusionsThe abundance, occurrence and infection rates of snail species were largely influenced by water physicochemical quality, sanitation and water contact behaviour of the inhabitants. Human activities, such as open field defecation and urination, livestock grazing, farming, and swimming were important predictors of the abundance of cercariae. Therefore, awareness creation should be implemented for proper containment of excreta (urine and faeces) and reducing human and animal contacts with surface waters to reduce snail-borne disease transmission.
Background: Long-Lasting Insecticidal Nets (LLINs) efficacy could be compromised due to a lot of influences together with user compliance and vector population insecticide resistance status. Thus, this study was to assess the biological efficacy of DuraNet® with the help of the World Health Organization cone bioassay and field experimental hut. Methods: A laboratory and a semi-field conditions experimental huts against Anopheles Mosquitoes were conducted in southwestern Ethiopia from September 2015 to January 2016. The bio efficacy of DuraNet® was evaluated using the WHO cone bioassay test and then its field efficacy was evaluated using experimental huts against the malaria vector population. Results: World Health Organization cone bioassay tests against pyrethroid-resistant An. arabiensis led to mean percent mortality and knockdown of 78% and 93%, respectively. Washing of DuraNet® successively reduced its efficacy from 93% knockdown (0 wash) to 45% knockdown (20 washes). Similarly, mean mortality decreased from 84% (0 wash) to 47% (20 washes). A total of 1575 female mosquitoes were collected over 40 nights out of which 1373(87.8%) were An. gambiae s.l., 116 (7.4%) were Anopheles coustani and 107 (6.8%) were An. pharoensis. The mean blood-feeding rate was significantly lower ( P < .001) in hut containing unwashed DuraNet® when compared to hut containing untreated DuraNet®. The mean mortality rate was significantly higher ( P < .001) in hut containing DuraNet® when compared to hut containing untreated DuraNet®. Unwashed DuraNet® showed the highest personal protection 88.7% and 100% against An. Arabiensis and An. pharoensis, respectively. Conclusion: Both DuraNet® and PermaNet 2.0 moderate efficacy against a pyrethroid-resistant population of An. arabiensis from Ethiopia. The bio efficacy of DuraNet® was found below the WHO recommendation. Therefore, the real impact of the observed insecticide resistance against DuraNet® to be further studied under phase-III trials, the need for new alternative vector control tools remains critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.