This paper presents Incremental Hierarchical Discriminant Regression (IHDR) which incrementally builds a decision tree or regression tree for very high dimensional regression or decision spaces by an online, real-time learning system. Biologically motivated, it is an approximate computational model for automatic development of associative cortex, with both bottom-up sensory inputs and top-down motor projections. At each internal node of the IHDR tree, information in the output space is used to automatically derive the local subspace spanned by the most discriminating features. Embedded in the tree is a hierarchical probability distribution model used to prune very unlikely cases during the search. The number of parameters in the coarse-to-fine approximation is dynamic and data-driven, enabling the IHDR tree to automatically fit data with unknown distribution shapes (thus, it is difficult to select the number of parameters up front). The IHDR tree dynamically assigns long-term memory to avoid the loss-of-memory problem typical with a global-fitting learning algorithm for neural networks. A major challenge for an incrementally built tree is that the number of samples varies arbitrarily during the construction process. An incrementally updated probability model, called sample size dependent negative-log-likelihood (SDNLL) metric is used to deal with large-sample size cases, small-sample size cases, and unbalanced-sample size cases, measured among different internal nodes of the IHDR tree. We report experimental results for four types of data: synthetic data to visualize the behavior of the algorithms, large face image data, continuous video stream from robot navigation, and publicly available data sets that use human defined features.
Abstract-Appearance-based image analysis techniques require fast computation of principal components of high-dimensional image vectors. We introduce a fast incremental principal component analysis (IPCA) algorithm, called candid covariance-free IPCA (CCIPCA), used to compute the principal components of a sequence of samples incrementally without estimating the covariance matrix (so covariance-free). The new method is motivated by the concept of statistical efficiency (the estimate has the smallest variance given the observed data). To do this, it keeps the scale of observations and computes the mean of observations incrementally, which is an efficient estimate for some wellknown distributions (e.g., Gaussian), although the highest possible efficiency is not guaranteed in our case because of unknown sample distribution. The method is for real-time applications and, thus, it does not allow iterations. It converges very fast for high-dimensional image vectors. Some links between IPCA and the development of the cerebral cortex are also discussed.
The capability of recognition is critical in learning but variation of sensory input makes recognition a very challenging task. The current technology in computer vision and pattern recognition requires humans to collect images, store images, segment images for computers and train computer recognition systems using these images. It is unlikely that such a manual labor process can meet the demands of many challenging recognition tasks that are c r i t i c al for generating intelligent behavior, such as face recognition, object recognition and speech recognition. Our goal is to enable machines to learn directly from sensory input streams while interacting with the environment including human teachers. While doing so, the human teacher is not allowed to dictate the internal state value of the system. He or she can in uence the system through only the system's sensors and e ectors. S u c h a c apability requires a fundamentally new way of addressing the learning problem, one that uni es learning and performance phases and requires a systematic self-organization capability. This paper concentrates on the state self-organization problem. We apply the method to autonomous face recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.