Even though Generative Adversarial Networks (GANs) have shown a remarkable ability to generate high-quality images, GANs do not always guarantee the generation of photorealistic images. Occasionally, they generate images that have defective or unnatural objects, which are referred to as `artifacts'. Research to investigate why these artifacts emerge and how they can be detected and removed has yet to be sufficiently carried out. To analyze this, we first hypothesize that rarely activated neurons and frequently activated neurons have different purposes and responsibilities for the progress of generating images. In this study, by analyzing the statistics and the roles for those neurons, we empirically show that rarely activated neurons are related to the failure results of making diverse objects and inducing artifacts. In addition, we suggest a correction method, called `Sequential Ablation’, to repair the defective part of the generated images without high computational cost and manual efforts.
Even though image generation with Generative Adversarial Networks (GANs) has been showing remarkable ability to generate high-quality images, GANs do not always guarantee photorealistic images will be generated. Sometimes they generate images that have defective or unnatural objects, which are referred to as 'artifacts'. Research to determine why the artifacts emerge and how they can be detected and removed has not been sufficiently carried out. To analyze this, we first hypothesize that rarely activated neurons and frequently activated neurons have different purposes and responsibilities for the progress of generating images. By analyzing the statistics and the roles for those neurons, we empirically show that rarely activated neurons are related to failed results of making diverse objects and lead to artifacts. In addition, we suggest a correction method, called 'sequential ablation', to repair the defective part of the generated images without complex computational cost and manual efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.