This paper proposes a traffic surveillance system that can efficiently detect an interesting object and identify vehicles and pedestrians in real traffic situations. The proposed system consists of a moving object detection model and an object identification model. A dynamic saliency map is used for analyzing dynamics of the successive static saliency maps, and can localize an attention area in dynamic scenes to focus on a specific moving object for traffic surveillance purposes. The candidate local areas of a moving object are followed by a blob detection processing including binarization, morphological closing and labeling methods. For identifying a moving object class, the proposed system uses a hybrid of global and local information in each local area. Although the global feature analysis is a compact way to identify an object and provide a good accuracy for non-occluded objects, it is sensitive to image translation and occlusion. Therefore, a local feature analysis is also considered and combined with the global feature analysis. In order to construct an efficient classifier using the global and local features, this study proposes a novel classifier based on boosting of support vector machines. The proposed object identification model can identify a class of moving object and discard unexpected candidate area which does not include an interesting object. As a result, the proposed road surveillance system is able to detect a moving object and identify the class of the moving object. Experimental results show that the proposed traffic surveillance system can successfully detect specific moving objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.