Crystal calorimeters have a long history of pushing the frontier on high-resolution electromagnetic (EM) calorimetry for photons and electrons. We explore in this paper major innovations in collider detector performance that can be achieved with crystal calorimetry when longitudinal segmentation and dual-readout capabilities are combined with a new high EM resolution approach to Particle Flow in multi-jet events, such as đ + đ + â đ»đ events in all-hadronic final-states at Higgs factories. We demonstrate a new technique for pre-processing đ 0 momenta through combinatoric di-photon pairing in advance of applying jet algorithms. This procedure significantly reduces đ 0 photon splitting across jets in multi-jet events. The correct photon-to-jet assignment efficiency improves by a factor of about 3 when the EM resolution is improved from 15 to 3%/
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E Ă B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscil-arXiv:1810.06703v1 [astro-ph.IM]
The PTOLEMY transverse drift filter is a new concept to
enable precision analysis of the energy spectrum of electrons near
the tritium ÎČ-decay endpoint. This paper details the
implementation and optimization methods for successful operation of
the filter for electrons with a known pitch angle. We present the
first demonstrator that produces the required magnetic field
properties with an iron return-flux magnet. Two methods for the
setting of filter electrode voltages are detailed. The challenges of
low-energy electron transport in cases of low field are discussed,
such as the growth of the cyclotron radius with decreasing magnetic
field, which puts a ceiling on filter performance relative to fixed
filter dimensions. Additionally, low pitch angle trajectories are
dominated by motion parallel to the magnetic field lines and
introduce non-adiabatic conditions and curvature drift. To minimize
these effects and maximize electron acceptance into the filter, we
present a three-potential-well design to simultaneously drain the
parallel and transverse kinetic energies throughout the length of
the filter. These optimizations are shown, in simulation, to achieve
low-energy electron transport from a 1 T iron core (or 3 T
superconducting) starting field with initial kinetic energy of
18.6 keV drained to < 10 eV (< 1 eV) in about 80 cm. This
result for low field operation paves the way for the first
demonstrator of the PTOLEMY spectrometer for measurement of
electrons near the tritium endpoint to be constructed at the Gran
Sasso National Laboratory (LNGS) in Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsâcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.