In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
We report the design of three-dimensional (3D) hierarchical wrinkle substrates that can maintain their superhydrophobicity even after being repeatedly stretched. Monolithic poly(dimethysiloxane) with multiscale features showed wetting properties characteristic of static superhydrophobicity with water contact angles (>160°) and very low contact angle hysteresis (<5°). To examine how superhydrophobicity was maintained as the substrate was stretched, we investigated the dynamic wetting behavior of bouncing and splashing upon droplet impact with the surface. On hierarchical wrinkles consisting of three different length scales, superhydrophobic bouncing was observed. The substrate remained superhydrophobic up to 100% stretching with no structural defects after 1000 cycles of stretching and releasing. Stretchable superhydrophobicity was possible because of the monolithic nature of the hierarchical wrinkles as well as partial preservation of nanoscale structures under stretching.
This paper describes how delamination-free, hierarchical patterning of graphene can be achieved on prestrained thermoplastic sheets by surface wrinkling. Conformal contact between graphene and the substrate during strain relief was maintained by the presence of a soft skin layer, resulting in the uniform patterning of three-dimensional wrinkles over large areas (>cm). The graphene wrinkle wavelength was tuned from the microscale to the nanoscale by controlling the thickness of the skin layer with 1 nm accuracy to realize a degree of control not possible by crumpling, which relies on delamination. Hierarchical patterning of the skin layers with varying thicknesses enabled multiscale graphene wrinkles with predetermined orientations to be formed. Significantly, hierarchical graphene wrinkles exhibited tunable mechanical stiffness at the nanoscale without compromising the macroscale electrical conductivity.
First springtail-inspired omniphobic surface by hierarchical structure to repel liquids even with high pressure of droplets.
The development of a simple and cost‐effective method for fabricating ≈10 nm scale nanopatterns over large areas is an important issue, owing to the performance enhancement such patterning brings to various applications including sensors, semiconductors, and flexible transparent electrodes. Although nanoimprinting, extreme ultraviolet, electron beams, and scanning probe litho‐graphy are candidates for developing such nanopatterns, they are limited to complicated procedures with low throughput and high startup cost, which are difficult to use in various academic and industry fields. Recently, several easy and cost‐effective lithographic approaches have been reported to produce ≈10 nm scale patterns without defects over large areas. This includes a method of reducing the size using the narrow edge of a pattern, which has been attracting attention for the past several decades. More recently, secondary sputtering lithography using an ion‐bombardment technique was reported as a new method to create high‐resolution and high‐aspect‐ratio structures. Recent progress in simple and cost‐effective top‐down lithography for ≈10 nm scale nanopatterns via edge and secondary sputtering techniques is reviewed. The principles, technical advances, and applications are demonstrated. Finally, the future direction of edge and secondary sputtering lithography research toward issues to be resolved to broaden applications is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.