Lithium (Li) metal has attracted significant attention as next‐generation anode material owing to its high theoretical specific capacity and low potential. For enabling the practical application of Li‐metal as an anode according to energy demands, suppressing dendrite growth by controlling the Li‐ion (Li+) is crucial. In this study, metal–organic frameworks comprising bipyridinic nitrogen linker (M‐bpyN) are proposed as 3‐dimensional (3D) Li guiding matrix. The proposed approach creates ordered electronegative functional sites that enable the preoccupied Li+ in the ordered bipyridine sites to produce isotropic Li growth. The Li guiding matrix containing 3D ordered bipyridinic N sites introduces preoccupied Li+ sites that attract the Li growth direction, thereby suppressing the dendrite growth during the electrodeposition of Li. After applying the M‐bpyN layers, stable lifespan of up to 900 cycles in the Li|M‐bpyN|Cu cell and over 1500 h of operation in the Li|M‐bpyN|Li symmetric cell is achieved. Moreover, the Li|M‐bpyN|LiFePO4 configuration shows a long cycle retention of 350 cycles at 0.5 C. These results indicate that an M‐bpyN Li guiding matrix, which enables a uniform Li+ flux by 3D ordered Li+‐chelating sites, serve as a suitable host for Li+ and enhance the performance of Li‐metal electrodes.
All-solid-state battery (ASSB) technology is the focus of considerable interest owing to their safety and the fact that their high energy density meets the requirements of emerging battery applications, such as electric vehicles and energy storage systems (ESSs). In light of this, current research on high-energy ASSBs harnesses the benefits of solid-state battery systems by employing anode materials with high energy densities. Owing to the excellent physical safety of solid electrolytes, it is possible to build a battery with high energy density by using high-energy negative electrode materials and decreasing the amount of electrolyte in the battery system. Sulfide-based ASSBs with high ionic conductivity and low physical contact resistance is recently receiving considerable attention. This review provides a summary on various anode materials for ASSBs operating under electrochemically reducing conditions from the perspective of electrochemical and physical safety. The electrochemical and physical properties of sulfide electrolytes used for lithium (Li) metal and particle-type anode materials are presented, as well as strategies for mitigating interfacial failures in solid-state cells through interlayer and electrode design.
Lithium (Li) is the “holy grail” for satisfying the increasing energy demand. This is because of its high theoretical capacity and low potential. Although Li is considered as a potential anode material, dendritic Li growth and the limited electrochemical properties continue to hinder its practical application. Structure‐based self lithium ion (Li
+
) concentrating electrodes with high capacity and uniform Li
+
‐flux are recommended to overcome these shortcomings of Li. However, recent studies have been limited to structural perspectives. In addition, the electrokinetic principle of electrode materials remains a challenge. Herein, the space‐confinement‐based strategy is suggested for condensed Li
+
‐flux control in nanoscaled slit spaces that induce the dense Li growth on an anodeless electrode by using the stratified carbon pack (SCP). The micro/mesoporous slits of the SCP concentrate the electric field, which is strengthened by the space‐confined electric field focusing, resulting in the accumulation of Li
+
‐flux in the host. The accumulated Li
+
in host sites enables a uniform Li deposition with high capacity at high current density stably. Furthermore, SCPs have great compatibility with LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) cathode, representing the outstanding full cell performance with Li deposited electrode which show the high specific of 115 mAh g
−1
at 4 C during 350 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.