Obesity‐induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA‐induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Oxidative phosphorylation compensatory changes in the retina can be detected as early as 2 months, before development of hyperglycemia, and are associated with reduced mitochondrial outer membrane integrity.
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid-binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial-to-mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid b-oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARc activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP-PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
For many neurodegenerative disorders, expression of a pathological protein by one cell type impedes function of other cell types, which in turn contributes to the death of the first cell type. In transgenic mice modelling Stargardt-like (STGD3) maculopathy, human mutant ELOVL4 expression by photoreceptors is associated with defects in the underlying retinal pigment epithelium (RPE). To examine how photoreceptors exert cytotoxic effects on RPE cells, transgenic ELOVL4 (TG1–2 line; TG) and wild-type (WT) littermates were studied one month prior (preclinical stage) to onset of photoreceptor loss (two months). TG photoreceptor outer segments presented to human RPE cells are recognized and internalized into phagosomes, but their digestion is delayed. Live RPE cell imaging pinpoints decreased numbers of acidified phagolysomes. In vivo, master regulator of lysosomal genes, transcription factor EB (TFEB), and key lysosomal enzyme Cathepsin D are both unaffected. Oxidative stress, as ruled out with high-resolution respirometry, does not play a role at such an early stage. Upregulation of CRYBA1/A3 and phagocytic cells (microglia/macrophages) interposed between RPE and photoreceptors support adaptive responses to processing delays. Impaired phagolysosomal maturation is observed in RPE of mice expressing human mutant ELOVL4 in their photoreceptors prior to photoreceptor death and associated vision loss.
Insulin-secreting pancreatic β-cells adapt to obesity-related insulin resistance via increases in insulin secretion and β-cell mass. Failed β-cell compensation predicts the onset of type 2 diabetes (T2D). However, the mechanisms of β-cell compensation are not fully understood. Our previous study reported changes in β-cell mass during the progression of T2D in the Nile rat (NR; Arvicanthis niloticus) fed standard chow. In the present study, we measured other β-cell adaptive responses, including glucose metabolism and β-cell insulin secretion in NRs at different ages, thus characterizing NR at 2 months as a model of β-cell compensation followed by decompensation at 6 months. We observed increased proinsulin secretion in the transition from compensation to decompensation, which is indicative of impaired insulin processing. Subsequently, we compared adaptive unfolded protein response in β-cells and demonstrated a positive role of endoplasmic reticulum (ER) chaperones in insulin secretion. In addition, the incidence of insulin-positive neogenic but not proliferative cells increased during the compensation phase, suggesting nonproliferative β-cell growth as a mechanism of β-cell mass adaptation. In contrast, decreased neogenesis and β-cell dedifferentiation were observed in β-cell dysfunction. Furthermore, the progression of T2D and pathophysiological changes of β-cells were prevented by increasing fibre content of the diet. Novelty Our study characterized a novel model for β-cell compensation with adaptive responses in cell function and mass. The temporal association of adaptive ER chaperones with blood insulin and glucose suggests upregulated chaperone capacity as an adaptive mechanism. β-Cell neogenesis but not proliferation contributes to β-cell mass adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.