Peptide–nanoparticle conjugates (PNCs) have recently emerged as a versatile tool for biomedical applications. Synergism between the two promising classes of materials allows enhanced control over their biological behaviors, overcoming intrinsic limitations of the individual materials. Over the past decades, a myriad of PNCs has been developed for various applications, such as drug delivery, inhibition of pathogenic biomolecular interactions, molecular imaging, and liquid biopsy. This paper provides a comprehensive overview of existing technologies that have been recently developed in the broad field of PNCs, offering a guideline especially for investigators who are new to this field.
Immune escape of a tumor from tumor-infiltrating lymphocytes (TILs) is induced by PD-L1, which is suppressed by miR-197. We investigated the clinicopathologic implications of the miR-197/PD-L1 axis and its effects on TILs and the clinicopathologic features of oral squamous cell carcinoma (OSCC). We used RT-PCR and immunohistochemistry in 68 OSCC patients to analyze the correlations between tumoral expression of miR-197 and PD-L1 and the degree of tumoral invasion by TILs (CD3+, CD4+, CD8+, PD-1+, FoxP3+, and CD20+ lymphocytes). PD-L1 levels correlated inversely with miR-197 but correlated positively with TILs. The aggressive features of OSCC, including high stage, angiolymphatic invasion, perineural invasion, and death, were associated with TIL depletion. High T stage (T4) tumors also had low PD-L1 but had high miR-197 expression. In a univariate survival analysis of the full cohort, high miR-197 was associated with poor overall survival, whereas high PD-L1 expression (2+) associated with good overall survival. In a multivariate analysis stratified based on miR-197 (median), high PD-L1 expression (2+) was an independent favorable prognostic factor for overall survival (P = 0.040) in the miR-197high subgroup but not the miR-197low subgroup. These findings may have clinicopathologic implications for the miR-197/PD-L1 axis and TILs in OSCC.
BACKGROUND: "Atypia of undetermined significance" (AUS) in the Bethesda System for Reporting Thyroid Cytopathology is a heterogeneous category for cases that cannot be easily classified into benign, suspicious, or malignant. This study evaluated whether cytomorphology-based subcategorization could better predict the malignancy risk in cases designated as AUS, and how the subcategories correlated with BRAF mutation status in thyroid fine-needle aspirates (FNA).
Upregulation of programmed death ligand 1 (PD-L1) allows cancer cells to evade antitumor immunity. Despite tremendous efforts in developing PD-1/PD-L1 immune checkpoint inhibitors (ICIs), clinical trials using such ICIs have shown inconsistent benefits. Here, we hypothesized that the ICI efficacy would be dictated by the binding strength of the inhibitor to the target proteins. To assess this, hyperbranched, multivalent poly-(amidoamine) dendrimers were employed to prepare dendrimer−ICI conjugates (G7-aPD-L1). Binding kinetics measurements using SPR, BLI, and AFM revealed that G7-aPD-L1 exhibits significantly enhanced binding strength to PD-L1 proteins, compared to free aPD-L1. The binding avidity of G7-aPD-L1 was translated into in vitro efficiency and in vivo selectivity, as the conjugates improved the PD-L1 blockade effect and enhanced accumulation in tumor sites. Our results demonstrate that the dendrimer-mediated multivalent interaction substantially increases the binding avidity of the ICIs and thereby improves the antagonist effect, providing a novel platform for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.