Retrospective observational studies have reported that statins improve clinical outcomes in patients previously treated with programmed cell death protein 1 (PD-1)-targeting monoclonal antibodies for malignant pleural mesothelioma (MPM) and advanced non-small cell lung cancer (NSCLC). In multiple mouse cancer models, de novo synthesis of mevalonate and cholesterol inhibitors was found to synergize with anti-PD-1 antibody therapy. In the present study, we investigated whether statins affect programmed death-ligand 1 (PD-L1) expression in cancer cells. Four statins, namely simvastatin, atorvastatin, lovastatin, and fluvastatin, decreased PD-L1 expression in melanoma and lung cancer cells. In addition, we found that AKT and β-catenin signaling involved PD-L1 suppression by statins. Our cellular and molecular studies provide inspiring evidence for extending the clinical evaluation of statins for use in combination with immune checkpoint inhibitor-based cancer therapy.
Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4–TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4–TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.
The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a critical transcriptional coactivator that maintains metabolic homeostasis and energy expenditure by cooperating with various transcription factors. Recent studies have shown that PGC1α deficiency promotes lung cancer metastasis to the bone through activation of TCF4 and TWIST1-mediated epithelial–mesenchymal transition (EMT), which is suppressed by the inhibitor of DNA binding 1 (ID1); however, it is not clear which transcription factor participates in PGC1α-mediated EMT and lung cancer metastasis. Here, we identified forkhead box A1 (FOXA1) as a potential transcription factor that coordinates with PGC1α and ID1 for EMT gene expression using transcriptome analysis. Cooperation between FOXA1 and PGC1α inhibits promoter occupancy of TCF4 and TWIST1 on CDH1 and CDH2 proximal promoter regions due to increased ID1, consequently regulating the expression of EMT-related genes such as CDH1, CDH2, VIM, and PTHLH. Transforming growth factor beta 1 (TGFβ1), a major EMT-promoting factor, was found to decrease ID1 due to the suppression of FOXA1 and PGC1α. In addition, ectopic expression of ID1, FOXA1, and PGC1α reversed TGFβ1-induced EMT gene expression. Our findings suggest that FOXA1- and PGC1α-mediated ID1 expression involves EMT by suppressing TCF4 and TWIST1 in response to TGFβ1. Taken together, this transcriptional framework is a promising molecular target for the development of therapeutic strategies for lung cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.