In this work, the UV-Vis-NIR absorption spectrum of liquid-phase exfoliated two-dimensional (2D) MoS2 nanosheets, revealed two prominent peaks at 608 nm (2.04 eV) and 668 nm (1.86 eV). These peaks were blue-shifted compared to the reported literature values and are attributed to the quantum confinement effect. Interestingly, the WS2 nanosheets exhibited the same characteristic absorption peak at ~624 nm (1.99 eV). Raman spectroscopy analysis revealed that both nanosheets displayed distinctive peaks [377.8 cm-1 and 405.6 cm-1 for MoS2, 348.3 cm-1 and 417.9 cm-1 for WS2] that originate from optical phonon modes (E12g and A1g). These peaks are shifted toward higher wavenumbers (i.e., blue-shift or phonon-stiffening) compared to bulk MoS2 and WS2, probably due to enhanced Stokes Raman scattering. Subsequently, surface functionalization of the nanosheets with 2-Mercaptoethanol was successfully performed and confirmed using optical characterization techniques, including FT-IR spectroscopy. In addition, we determined the spectral broadening after functionalization, which would be attributed to photon confinement of the nano-sized layer structure, or to inhomogeneous broadening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.