Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs) has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice.
Mucosa-associated lymphoid tissue (MALT) lymphomas are characterized by lymphoepithelial lesions pathologically. Colonic MALT lymphomas are relatively rarer than lymphomas of the stomach or small intestine. Endoscopically, colonic MALT lymphoma frequently appears as a nonpedunculated protruding polypoid mass and/or an ulceration in the cecum and/or rectum. We report a unique case of a colonic MALT lymphoma presenting as a semipedunculated polyp. A 54-year-old man was found to have a 2-cm semipedunculated polyp in the sigmoid colon during screening colonoscopy. The polyp was removed by endoscopic mucosal resection. Histologic examination of the resected polyp revealed diffuse epithelial infiltration by discrete aggregates of lymphoma cells. We diagnosed the tumor as low-grade B-cell MALT lymphoma by immunohistochemical staining.
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells gradually transform into mesenchymal-like cells losing their epithelial functionality and characteristics. EMT is thought to be involved in the pathogenesis of numerous lung diseases ranging from developmental disorders and fibrotic tissue remodeling to lung cancer. Lung cancer is the most lethal form of cancer worldwide, and despite significant therapeutic improvements, the patient survival rate still remains low. Activation of EMT endows invasive and metastatic properties upon cancer cells that favor successful colonization of distal target organs. The present review provides a brief insight into the mechanism and biological assessment methods of EMT in lung cancer and summarizes the recent literature highlighting the controversial experimental data and conclusions.
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus and relapsable eczematous lesions. The hallmarks of AD are defects in the epidermal barrier and immunoglobulin E (IgE)-mediated sensitization to several environmental allergens, as well as an immune disorder mediated by an imbalance toward T-helper-2 response. Melittin, a major component of bee venom, has been studied in various inflammatory diseases. However, the beneficial effects of melittin on mouse with AD-like symptoms have not been explored. Therefore, we investigated the anti-allergic effects of melittin. AD was induced by ovalbumin (OVA) patch. After agent treatment, skin tissues and sera were extracted from the sacrificed mice were used to demonstrate the effects of melittin through various molecular biological methods. The results showed that OVA-induced skin thickening and inflammatory infiltration were decreased in the melittin-treated group. Melittin prevented OVA-induced filaggrin deficiency and imbalanced inflammatory mediators. Furthermore, melittin inhibited IL-4/IL-13-induced filaggrin downregulation through the blockade of STAT3 activation in human keratinocytes. In summary, this study has shown that melittin ameliorated OVA-induced AD-like symptoms from various perspectives. The findings of this study may be the first evidence of the anti-inflammatory effects of melittin on OVA-induced AD.
In recent years, natural polymers such as cellulose, alginate and chitosan have been used worldwide as biomedical materials and devices, as they offer more advantages over synthetic polymers. The aim of this study was to clarify the usefulness of microbial cellulose (MC) for use as a dressing and scaffold material. For evaluating the biodegradability and toxicity of MC, we divided the rats (n = 12) into two groups (the implanted group and the non-implanted group). In the implanted group, we implanted the film type of MC in the backs of six rats. In the non-implanted group, however, we did not implant the film type of MC in the backs of the six rats. Four weeks later, we compared two groups by the gross, histological and biochemical characteristics by using blood and tissue samples. To evaluate the wound healing effects of MC, three full-thickness skin defects were made on the backs of each rat (n = 20). Three wounds on the backs of the same rats were treated with other dressing materials, namely, Vaseline gauze (group Con), Algisite M(®) (group Alg) and MC (group MC). We analysed the gross, histological and biochemical characteristics by western blotting. MC was found to be biodegradable and non-toxic. On day 3, the MC film was visible under the subcutaneous tissue; however, after 4 weeks, no remnants of the film were visible under the subcutaneous tissue. Furthermore, there was no evidence of MC-induced toxicity. Moreover, group MC showed more rapid wound healing compared with group Con. On day 14 after skin excision, group MC showed greater decrease in wound size compared with group Con (33% versus 7·2%). The wound healing effects were also substantiated by the histological findings (greater reduction in inflammation and rapid collagen deposition as well as neovascularisation) and western blotting (decreased expression of vascular endothelial growth factor and transforming growth factor-β1 in group MC on day 14 after skin excision, unlike group Con). This study showed that, in addition to having wound healing effects, MC is biodegradable and non-toxic and can, therefore, be used as a dressing and scaffold material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.