In a survey of the literature from the last 20 years, 20% of the numerical models used to analyze the performance of adsorption chillers assumed the evaporator and condenser were ideal, with a fixed evaporation temperature and condenser temperature, and ignored interactions between the adsorption bed and evaporator/condenser. Even when the interaction with the evaporator and condenser was included, the other 80% of studies modeled the adsorption bed based on the LPM (lumped parameter method), which ignores the geometry effect and contact resistance of the bed, and thus reduces the accuracy of the analysis. As a consequence, these earlier numerical studies overestimated the system performance of the adsorption chiller. In this study, we conducted a refined numerical approach which avoids these limitations, producing estimates in close agreement with experimental results. Compared with our approach, the models with ideal treatment of evaporator and condenser overestimated COP (coefficient of performance) and SCP (specific cooling power) by as much as 16.12% and 24.64%, respectively. The models based on LPM overestimated COP and SCP by 22.82% and 11.28%, compared to our approach.
This study conducted an exergy analysis of advanced adsorption cooling cycles. The possible exergy losses were divided into internal losses and external losses, and the exergy losses of each process in three advanced cycles: a mass recovery cycle, heat recovery cycle and combined heat and mass recovery cycle were calculated. A transient two-dimensional numerical model was used to solve the heat and mass transfer kinetics. The exergy destruction of each component and process in a finned tube type, silica gel/water working paired-adsorption chiller was estimated. The results showed that external loss was significantly reduced at the expense of internal loss. The mass recovery cycle reduced the total loss to 60.95 kJ/kg, which is −2.76% lower than the basic cycle. In the heat recovery cycle, exergy efficiency was significantly enhanced to 23.20%. The optimum value was 0.1248 at a heat recovery time of 60 s. The combined heat and mass recovery cycle resulted in an 11.30% enhancement in exergy efficiency, compared to the heat recovery cycle. The enhancement was much clearer when compared to the basic cycle, with 37.12%. The observed dependency on heat recovery time and heating temperature was similar to that observed for individual mass recovery and heat recovery cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.