Kinesins are molecular motors which transport various cargoes in the cytoplasm of cells and are involved in cell division. Previous models for kinesins have only targeted their in vitro motion. Thus, their applicability is limited to kinesin moving in a fluid with low viscosity. However, highly viscoelastic fluids have considerable effects on the movement of kinesin. For example, the high viscosity modifies the relation between the load and the speed of kinesin. While the velocity of kinesin has a nonlinear dependence with respect to the load in environments with low viscosity, highly viscous forces change that behavior. Also, the elastic nature of the fluid changes the velocity of kinesin. The new mechanistic model described in this paper considers the viscoelasticity of the fluid using subdiffusion. The approach is based on a generalized Langevin equation and fractional Brownian motion. Results show that a single kinesin has a maximum velocity when the ratio between the viscosity and elasticity is about 0.5. Additionally, the new model is able to capture the transient dynamics, which allows the prediction of the motion of kinesin under time varying loads.
Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.