High-energy emission associated with star formation has been proposed as a significant source of interstellar medium (ISM) ionization in low-metallicity starbursts and an important contributor to the heating of the intergalactic medium (IGM) in the high-redshift (z ≳ 8) universe. Using Chandra observations of a sample of 30 galaxies at D ≈ 200–450 Mpc that have high specific star formation rates of 3–9 Gyr−1 and metallicities near Z ≈ 0.3Z ⊙, we provide new measurements of the average 0.5–8 keV spectral shape and normalization per unit star formation rate (SFR). We model the sample-combined X-ray spectrum as a combination of hot gas and high-mass X-ray binary (HMXB) populations and constrain their relative contributions. We derive scaling relations of log L 0.5 – 8 keV HMXB /SFR = 40.19 ± 0.06 and log L 0.5 – 2 keV gas /SFR = 39.58 − 0.28 + 0.17 ; significantly elevated compared to local relations. The HMXB scaling is also somewhat higher than L 0.5 – 8 keV HMXB –SFR-Z relations presented in the literature, potentially due to our galaxies having relatively low HMXB obscuration and young and X-ray luminous stellar populations. The elevation of the hot gas scaling relation is at the level expected for diminished attenuation due to a reduction of metals; however, we cannot conclude that an L 0.5 – 2 keV gas –SFR-Z relation is driven solely by changes in ISM metal content. Finally, we present SFR-scaled spectral models (both emergent and intrinsic) that span the X-ray-to-IR band, providing new benchmarks for studies of the impact of ISM ionization and IGM heating in the early universe.
The Chandra Deep Field-South and North surveys (CDFs) provide unique windows into the cosmic history of X-ray emission from normal (nonactive) galaxies. Scaling relations of normal-galaxy X-ray luminosity (L X) with star formation rate (SFR) and stellar mass (M ⋆) have been used to show that the formation rates of low-mass and high-mass X-ray binaries (LMXBs and HMXBs, respectively) evolve with redshift across z ≈ 0–2 following L HMXB/SFR ∝ (1 + z) and L LMXB/M ⋆ ∝ (1 + z)2−3. However, these measurements alone do not directly reveal the physical mechanisms behind the redshift evolution of X-ray binaries (XRBs). We derive star formation histories for a sample of 344 normal galaxies in the CDFs, using spectral energy distribution (SED) fitting of FUV-to-FIR photometric data, and construct a self-consistent, age-dependent model of the X-ray emission from the galaxies. Our model quantifies how X-ray emission from hot gas and XRB populations vary as functions of host stellar-population age. We find that (1) the ratio L X/M ⋆ declines by a factor of ∼1000 from 0 to 10 Gyr and (2) the X-ray SED becomes harder with increasing age, consistent with a scenario in which the hot gas contribution to the X-ray SED declines quickly for ages above 10 Myr. When dividing our sample into subsets based on metallicity, we find some indication that L X/M ⋆ is elevated for low-metallicity galaxies, consistent with recent studies of X-ray scaling relations. However, additional statistical constraints are required to quantify both the age and metallicity dependence of X-ray emission from star-forming galaxies.
We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). They are responsible for communicating with the other authors about progress, submissions of revisions, and final approval of proofs. We confirm
To achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the 'Brighter-Fatter Effect.' In this work a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared by a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.