MeCP2 plays a multifaceted role in gene expression regulation and chromatin organization. Interaction between MeCP2 and methylated DNA in the regulation of gene expression is well established. However, the widespread distribution of MeCP2 suggests it has additional interactions with chromatin. Here we demonstrate, by both biochemical and genomic analyses, that MeCP2 directly interacts with nucleosomes and its genomic distribution correlates with that of H3K27me3. In particular, the methyl-CpG-binding domain of MeCP2 shows preferential interactions with H3K27me3. We further observe that the impact of MeCP2 on transcriptional changes correlates with histone post-translational modification patterns. Our findings indicate that MeCP2 interacts with genomic loci via binding to DNA as well as histones, and that interaction between MeCP2 and histone proteins plays a key role in gene expression regulation.
Methyl-CpG-binding protein (MeCP2) is highly expressed in neurons. It plays an important role in the development of synapses and the formation of circuits in the central nervous system (CNS). Mutations in MECP2 cause neurodevelopmental disorders and mental retardation in humans. Therefore, it has become important to determine the distribution and function of MeCP2 in vivo. The retina consists of three nuclear cell layers and two layers of synapses; neurons in each layer are connected to form fine circuits necessary for visual signal transduction. Using immunohistochemical analysis, we found that MeCP2 was expressed in all nuclear cell layers, with differences in the levels of MeCP2 expression observed among the layers. To understand the structural defects in the retina due to the loss of MeCP2, we sought to elucidate the organization of the retinal structure in the Mecp2 knockout (KO) mouse. Overall, we found a normal retinal structure in Mecp2 KO mice. However, because Mecp2 mutations have a highly variable effect on neuronal architecture, we analyzed morphological changes in a subset of retinal ganglion cells of Mecp2 KO mice. In Thy1-GFP mice crossed with Mecp2 mutant mice, Sholl intersections analyses showed a subtle increase in number of intersections due to increased branching proximal to the soma in Mecp2 KO mice. Our results demonstrate that the expression of MeCP2 and the effects of Mecp2 mutations are highly specific to tissue and cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.