A slow onset of action has been hypothesized to weaken the reinforcing effects of drugs. The present study evaluated this hypothesis with slow-onset cocaine analogs, WIN 35428, RTI 31, and RTI 51. When cocaine or a cocaine analog was made available to rhesus monkeys (n ¼ 4 or 5) for self-administration under a progressive-ratio (PR) schedule with a 1-h time-out between injections, all the drugs functioned as positive reinforcers. The maximum number of injections was in the order of cocaine4WIN 354284RTI 314RTI 51. In in vivo binding in rat striatum, equipotent doses of cocaine, WIN 35428, RTI 31, and RTI 51 were estimated to displace 25% of [ 3 H]WIN 35428 binding at the dopamine transporters (DAT), respectively, 5.8, 22.4, 30.8, and 44.1 min after the intravenous injection. Further, relative reinforcing efficacy was correlated with rate of DAT binding such that slower displacement of [ 3 H]WIN 35428 was associated with a weaker reinforcing effect. In in vitro binding in monkey brain tissue, the cocaine analogs had higher affinity for monoamine transporter sites, but similar affinity ratios of 5-HTT/DAT, compared to cocaine. Lastly, RTI 31 was shown to function as a positive reinforcer in drug-naïve rhesus monkeys under a fixed-ratio 1 schedule. Collectively, the data support the hypothesis that a slow onset at the DAT is associated with reduced reinforcing efficacy of DAT ligands. The data under both the PR and FR schedules, however, suggest that a slow onset at the DAT influence reinforcing effect only to a limited extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.